
Buenos on the ARM architecture

October 25, 2008

Contents

1 Introduction 2

2 Softgun emulator and the ABC board 3
2.1 Introduction . 3
2.2 Physical memory device layout 3
2.3 Physical memory address space layout 3
2.4 Virtual memory map . 4
2.5 Non-YAMS devices . 4

2.5.1 CPU . 4
2.5.2 MMU . 4
2.5.3 Memory controller (MC) 5
2.5.4 Flash . 5
2.5.5 DRAM . 5
2.5.6 Advanced interrupt controller (AIC) 5
2.5.7 Power management controller (PMC) 5
2.5.8 System timer (ST) . 6

2.6 YAMS devices . 6
2.7 Other changes to softgun . 6

2.7.1 GDB breakpoint fix . 6
2.7.2 Command line option for setting buenos command line (-k) 7
2.7.3 The armdebug configuration option 7
2.7.4 Configuration file abc.sg 7

3 ARM specific changes to Buenos 7
3.1 Introduction . 7
3.2 Bootup . 8
3.3 Build system . 8
3.4 Context switch . 9

3.4.1 Introduction . 9
3.4.2 ARM processor modes . 10
3.4.3 Handling the first exception 10
3.4.4 Handling system mode exceptions 11
3.4.5 Handling user mode exceptions 11

1

3.5 Virtual memory . 11
3.5.1 Introduction . 12
3.5.2 Mapping memory . 12

3.6 Drivers . 12
3.6.1 Introduction . 12
3.6.2 Flash and ramdisk devices 13
3.6.3 Timer . 13
3.6.4 TTY . 13
3.6.5 Processor sleeping . 13

3.7 Test cases . 13
3.8 Miscellaneous fixes . 14

4 Tutorial: working in the softgun environment 14
4.1 Building a cross compiler and utilities 14
4.2 Building buenos, softgun and userland 15
4.3 Booting buenos . 16
4.4 Debugging . 19

4.4.1 Using GDB . 19
4.4.2 Other debugging strategies 20

5 Appendix A: Educational story on debugging Buenos 21

1 Introduction

Buenos is an educational operating system developed in 2003 at Helsinki Uni-
versity of Technology (TKK). The system runs on top of a MIPS emulator
(YAMS) and is intended to be extendable by students. On our “Project In
Embedded Systems” course we chose to port Buenos to the ARM architecture
to get experience with ARM systems programming and also to see if Buenos
really was that extendable. When we started the Buenos-ARM porting project
we only had little knowledge of the details of the ARM processor and system
architecture, so considerable time was spent on gathering information on the
architecture.

This manual is organized into three sections. The first part documents the
emulated hardware environment which consists of the softgun ARM emulator
and our additions to it. The second part gives an overview of the changes we
had to make to Buenos to support the ARM architecture. Finally, the third
part is a short hands-on tutorial on working in the Buenos-ARM environment.
It explains how to compile, configure, run and debug Buenos on ARM.

2

2 Softgun emulator and the ABC board

2.1 Introduction

For the purposes of porting Buenos to ARM we briefly surveyed three ARM
emulators – Qemu, Gxemul and Softgun. Since Buenos depends on many devices
in the YAMS MIPS emulator and because we wanted to keep the changes to
Buenos minimal, we knew that we would have to add support for some of these
YAMS devices also to our chosen ARM emulator. After spending a few hours
reading the source code of the each emulators we got the impression that Softgun
would be the best choice given our need to add new devices to it, since it is very
simple. We were able to add a “hello world” device and a new board already
during the initial survey.

Softgun is a simple, extensible ARM system emulator. Its CPU emulation
is a simple interpreter, which fetches opcode from memory and interprets it
mostly with clean C code. Some opcodes are optimized in x86 assembly but
also C versions are available and are in use for other architectures. The system
abstraction in Softgun is called a board and defined in a separate C file. A board
definition is a set of devices and their interconnections. The board definitions
in Softgun are fairly flexible, allowing arbitrary connections between I/O pins
of emulated devices.

We named our imaginary ARM board “ARM Buenos Computer”, or ABC
in short. The board is based on an Atmel AT91RM9200 SoC, but some of
the Atmel devices are disabled since there is no support for them in Buenos,
and the YAMS devices have been added to the system to make porting eas-
ier. The board can be found under the boards directory of softgun (soft-
gun/boards/abc.c), and the added YAMS devices under the yams directory
of softgun (softgun/yams/*.c). Due to the modular design of Softgun very few
other changes were necessary. It is important to note that since SMP is not
common on embedded systems Buenos on ARM supports only one processor
unlike on MIPS.

2.2 Physical memory device layout

Table 1 shows what is mapped in physical memory. MMIO indicates that it’s
Memory Mapped IO device. dram0 is mapped to two places because we wanted
the kernel to run in 0x80000000 as in MIPS and dram0 must also be mapped
to the beginning of memory because interrupt vectors reside there.

2.3 Physical memory address space layout

Table 2 shows how kernel uses it’s address space. Because dram0 is mapped
to two places, kernel is also found from the beginning of the physical memory.
First level page table is always in the same address to ease modifying it. Notice
that kernel’s initial stack grows downwards really starting from 0x8000fffc.

3

Table 1: ABC memory mappings
Address Size Description

0x00000000 0x10000000 dram0 (System RAM)
0x00000000 0x00100000 flash (Flash)
0x10000000 0x01000000 flash (Flash)
0x80000000 0x10000000 dram0 (System RAM)
0x90000000 0x00200000 dram1 (Ramdisk RAM)
0xffff0000 0x00001000 yams descriptor metadevice MMIO
0xffff1000 0x00001000 yams command line MMIO
0xffff8000 0x0000001c yams device MMIO
0xffff8000 0x0000000c yams tty MMIO
0xffff800C 0x00000004 yams meminfo MMIO
0xffff8014 0x00000004 yams shutdown MMIO
0xffff8018 0x00000008 yams cpustatus MMIO
0xffffff00 0x00000010 mc (Memory controller MMIO)
0xfffff000 0x00000200 aic (Advanced Interrupt Controller MMIO)
0xfffffc00 0x00000100 pmc (Power Management Controller MMIO)
0xfffffd00 0x00000100 st (System Timer MMIO)

Table 2: Buenos physical memory address space layout
Address Size Description

0x80000000 0x00004000 Interrupt vector and jump code
0x80004000 0x00004000 Main translation table (page table level 1)
0x80008000 0x00008000 Initial stack
0x80010000 0x00100000 Kernel code

2.4 Virtual memory map

Table 3 shows how memory works after virtual memory has been enabled. In
Access column Priv. R/W means that the memory can only be accessed from
kernel mode. User R/W can be accessed from user mode and from kernel mode.
The page table may restrict access for reading only.

2.5 Non-YAMS devices

2.5.1 CPU

Softgun 0.16 emulates ARM CPU of the ARM9 family in both normal and
thumb mode.

2.5.2 MMU

The MMU in ABC emulates the MMU in the ARM920T processor. In buenos
drivers/ cp15.S provides a C level interface to the MMU.

4

Table 3: Buenos virtual memory mappings
Virtual Address Size Physical Address Access Description

0x00000000 0x00100000 0x00000000 Priv. R/W Directly mapped interrupt vector
0x10000000 0x00100000 0x00100000 Priv. R/W Directly mapped flash
0x30000000 0x50000000 in pagepool User R/W User space (processes)
0x80000000 0x01000000 0x80000000 Priv. R/W Directly mapped kernel code
0x90000000 0x00100000 0x90000000 Priv. R/W Directly mapped ramdisk
0xfff00000 0x00100000 0xfff00000 Priv. R/W Directly mapped for I/O

2.5.3 Memory controller (MC)

2.5.4 Flash

ABC has a 16-megabyte AM29LV128ML NOR flash chip. Only the first megabyte
of the chip is memory-mapped so that it can be read easily. Writing to the flash
is rather complex. The chip has 64-kilobyte sectors. As it is NOR flash, chang-
ing ones into zeros is easy but to change zeros to ones you have to erase an entire
sector. In practice most writes on TFS (the Buenos filesystem) requires erasing
an entire block. In buenos drivers/amdflash.c handles reading and writing to
flash.

2.5.5 DRAM

ABC has two DRAM chips. A 2-megabyte “dram1” holds a ramdisk we were
forced to add due to slowness of NOR flash and time constraints. A 1-megabyte
“dram0” is the actual system RAM. “dram1” is available through yams descrip-
tor as “ramdisk” device. With more time, implementing a ramdisk in Buenos,
using the Flash chip for persistent storage and system RAM for runtime access,
would make the system more realistic.

2.5.6 Advanced interrupt controller (AIC)

The Advanced Interrupt Controller emulates the Atmel AT91AIC. It is used by
Buenos simply to enable the necessary interrupts (timer most importantly), but
allows rather fine-grained control of routing of interrupts from actual interrupt-
generating devices to the CPU. The definitive source for AIC documentation
is the Atmel AT91RM9200 [2] SoC documentation. at91.c initializes AIC by
writing 1 << i to ith AIC Source Vector Register so that cswitch arm.S can
read the cause of the interrupt from AIC Interrupt Vector Register and pass
it to interrupt handle. For instance INTERRUPT CAUSE HARDWARE 5 is
defined as (1 << 15).

2.5.7 Power management controller (PMC)

The Power Management Controller emulates the Atmel AT91PMC. It derives
clocks for all the devices of the system from two master oscillators. On ABC, it

5

is only explicitly connected to the System Timer device. The definitive source
for PMC documentation is the ATMEL AT91RM9200 [2] SoC documentation.
at91.c initializes PMC by writing to Main Oscillator Register (MOR) to enable
the oscillator and set it to start after one slow cycle and by writing to Master
Clock Register (MCKR) to select main clock as the clock source.

2.5.8 System timer (ST)

The System Timer emulates the Atmel AT91ST. It can be programmed to
generate timer interrupts at specific intervals and to calculate elapsed time. On
ABC the timer interrupts are connected to IRQ1 of AIC. at91.c initializes ST
to raise IRQ pin approximately 1000 times per second and configures AIC to
generate interrupts for ARM when the pin is high.

2.6 YAMS devices

The “descriptor” device implements a YAMS style device descriptor meta de-
vice that tells Buenos about devices that are present. On ABC the device has
been mapped to a different address than under YAMS, but otherwise behaves
identically. The memory address was changed mainly to keep memory mapped
I/O devices closer to each other in memory space. The changes to the interface
were two new device types:

• YAMS DESCRIPTOR TYPE FLASH (0x302)

• YAMS DESCRIPTOR TYPE RAMDISK (0x303)

Other YAMS-style devices that were implemented include “commandline”,
“cpustatus”, “meminfo”, “shudown” and “tty”. In particular hard disk device
was not implemented and tty device only supports polling at the moment.

2.7 Other changes to softgun

As expected we could not limit our changes to softgun to just adding new
devices. This section documents changes we had to make to other parts of
softgun.

2.7.1 GDB breakpoint fix

Softgun supports software breakpoints. When GDB asks softgun to set a break-
point at address ADDR it replaces the instruction at ADDR with a break in-
struction and makes a backup of the original instruction. We noticed that with
a simple

break ADDR

continue

continue

6

the first “continue” returns with PC set to ADDR+4 and not ADDR. The
second “continue” then continues at ADDR+4 and the code at ADDR is never
executed. As a temporary workaround we changed the implementation of the
breakpoint instruction (i bkpt() function in instructions.c) to decrement the
value of PC with 4.

2.7.2 Command line option for setting buenos command line (-k)

The “commandline” YAMS-style device is not very useful unless there is some
way to pass it the desired string from command line. To make it possible to set
buenos boot command line easily we added a new command line option “-k” to
parse commandline function in softgun.c

2.7.3 The armdebug configuration option

We modified arm9cpu.c so that it calls the function debug print instruction()
on every clock cycle if the configuration option “armdebug” is set to a non-zero
value. This allowed us to easily execute temporary debugging and tracing code
in the emulator.

2.7.4 Configuration file abc.sg

The board configuration in “buenos/softgun/abc.sg” can be used to change var-
ious settings of the ABC hardware. By default it contains some global settings
like board name, path to the dynamic library that defines the board hardware
configuration, and paths used by softgun to store temporary files. The global
section also includes armdebug flag that can be used to enable custom debugging
code in softgun (see end of debugging chapter in Tutorial section).

Some aspects of the hardware can also be configured using the board con-
figuration file. On ABC board these are CPU clock rate, DRAM chip sizes
and flash chip type. The regions section only contains aliases that can be used
with the -l command line option to specify an address and range with a sym-
bolic name instead of a hex number. If you want to e.g. change the address of
ramdisk you need to also edit “softgun/boards/abc.c”.

The final section of the configuration file is the remote debugger interface
configuration. The “gdebug” section includes the host address and port to listen
on.

3 ARM specific changes to Buenos

3.1 Introduction

This section is intended to give an overview of the changes we had to make
to port Buenos to the ARM architecture. Our goal was to keep the changes
minimal so that it would be possible to merge the ARM port later back to the
official Buenos tree in the future.

7

3.2 Bootup

On MIPS the YAMS emulator parsers the ELF headers of Buenos binary and
copies the loadable segments to RAM. Softgun does not have an ELF parser yet
so we started to look for other bootup strategies.

A typical bootup approach on ARM is to map a tiny part of flash memory
to the beginning of physical memory since that is where the CPU by default
starts to execute instructions. We initially wrote a boot loader in assembler that
copied rest of the Buenos to RAM, set stack pointer appropriately and jumped
to the C code. Pretty soon we noticed that the RAM doesn’t contain zeroes and
the compiler assumes that “.bss” section should contain zeroes so we modified
the boot loader to also zero rest of the RAM.

After a few bootups we realized that Softgun supports only software break-
points. If we set a breakpoint to RAM before bootup code had copied Buenos
to RAM the breakpoint got overwritten. Even worse, when the breakpoint was
disabled Softgun restored the original contents of breakpoint location with the
original opcode, which was uninitialized data at the time the breakpoint was
set. Since we did not have time to improve GDB support in Softgun we were
forced to change our bootup strategy. We modified the Makefile to produce
“buenos.ramimage” that can just be loaded to “dram0” using Softgun’s “-l”
command line option. ARM processor is booted from address zero and the very
first thing that the image does is to jump to the real kernel code at 0x80010000.

3.3 Build system

Since our goal was to support both the original MIPS architecture and the
ARM architecture we modified Makefile to architecture name as parameter
named “ARCH”. The default is currently “ARCH=arm” which includes code
inside “#ifdef ARCH ARM” in the build but it is easy to set the default back
to“ARCH=mips” if we ever want to merge the changes back to the official
Buenos tree.

Linker flags on ARM differ from MIPS in a various ways:

• We noticed that on ARM GCC generates assembler code that calls “ udivsi3”
to handle division. In order to make this work we linked buenos against
libgcc.

• Since “#ifdef” directives don’t work in linker scripts we were also forced
to split the linker script “ld.script” into two files (“ld arm.script” and
“ld mips.script”). These differ in OUTPUT FORMAT directive and ARM
version also embeds jumper code to the beginning of boot image.

• Since interrupt vectors on ARM reside in the beginning of physical memory
the kernel mode also maps the beginning of virtual memory directly there.
We moved the load address of userland binaries from 0x0 to 0x30000000 for
clarity. Later we noticed that ARM also supports “high” interrupt vectors
that can reside elsewhere in the address space. Using “high” interrupts

8

would be useful to catch NULL pointer accesses but this is currently not
done.

• For some reason GNU ld generated only one program header with “rwx”
permissions on ARM. To get separate read-only and read-write segments
on ARM we had to modify the userland linker script to explicitly specify
two program headers.

3.4 Context switch

3.4.1 Introduction

Context switch is probably the most complex subsystem of Buenos. When the
processor raises an exception it branches to a piece of code called interrupt
vector area (IVA) and uses type of the exception as an offset. Just like on MIPS
Buenos copies code to handle these exceptions to IVA using memorycopy().
This code just branches back to real handler routines that are not in the IVA.
Since the branch is not expressable using a 26-bit immediate the code has to
load the branch address first from memory to register. On ARM the only usable
register at this point is unintuitively the stack pointer (sp).

The diagram above gives an overview of what happens during context switch.
It is discussed in detail in the following chapters.

9

3.4.2 ARM processor modes

On MIPS the EXL bit distinguishes between privileged and unprivileged pro-
cessor modes. On ARM the situation is more complex than that: the processor
has seven different processor modes. Refer to the table 2-1 in [1] for a complete
list. In Buenos we use four of the modes:

• User mode for userland programs

• System mode for regular kernel code

• IRQ mode for handling IRQs

• Supervisor mode (SVC) for booting and handling context switch

Of the other three modes, the undefined mode can currently be entered if the
processor encounters an undefined instruction, and the abort mode upon illegal
memory access. These exceptions are not handled properly, and will result in
kernel panic. The FIQ mode for processing Fast IRQs cannot be entered, since
the ABC system cannot generate Fast IRQs.

The user and system modes have access to 16 general purpose registers, and
the Current Process Status Register (CPSR), which also determines the current
mode. The other modes each have three additional registers. Stack pointer (SP)
and link register (LR) shadow the corresponding user/system mode registers,
and SPSR stores the mode the processor was in when the mode was entered.
The Fast IRQ mode has even more additional registers, but since the mode is
not used, they are not covered here.

3.4.3 Handling the first exception

Initially the system boots in SVC mode. When virtual memory and threading
subsystems have been initialized the main() function calls thread switch() which
issues the “swi 0” instruction that causes a software interrupt. As a result the
processor saves current state (this is not important, since we are not going to
return to main()) and jumps to 0x00000008. Note that currently there is a race
condition: a timer interrupt might get triggered before main() manages to issue
“swi 0” but this should not be a problem since also that patch should properly
switch to the initial thread.

The handler code first saves the first four registers to a scratch memory area
to gain some working space. This is not needed on MIPS, since MIPS has two
registers (k0 and k1) reserved for kernel code. Next the handler code checks the
mode from which we entered SVC mode, and notices it was also SVC. This is a
special case that only happens at bootup, at the first thread switch() call.

In this special case, interrupt stack is selected. The previous state is not
saved, and instead the handler code directly switches to system mode and calls
scheduler schedule. The scheduler then chooses to switch to init startup thread
since it’s the only non-idle thread in thread able. When the C function returns
the assembler context switch code figures out where the context to restore is

10

(by reading scheduler current thread[FETCH CPU NUM]). It then switches to
SVC mode so that it can use the special form (marked with caret in assembler
syntax) of “ldmia” instruction which loads saved register contents from memory
into user/system mode registers. Finally it restores user-mode PC from SVC-
mode LR using movs, which also copies SPSR to CPSR thus restoring processor
mode and completing context restore.

3.4.4 Handling system mode exceptions

After the first context switch we are in init startup thread() in system mode
and using the kernel stack of the thread. If the C code creates a new thread (for
example networking code does this) it may switch to this thread immediately
using thread switch() that causes an exception using “swi 0”. The context
switch handler then sees that the exception occured in kernel space and can
thus use kernel stack of the current thread to save context. Since the exception
was not an IRQ it switches to system mode and calls the C handler which
schedules a new thread. Again when the C handler returns the context swith
code restores this new thread.

If the exception was caused by timer and not by “swi 0” the context switch
code is entered in IRQ mode instead of SVC mode and the handler uses the
interrupt stack of the processor (although we only have one processor) for the
C code. The interrupt stack is used for handling IRQs mainly because this was
done on MIPS. The most obvious reason to use a separate interrupt stack on
MIPS is to allow a thread to continue on a different CPU while the interrupt
that interrupted it is being processed. Since there are no multiple CPUs on
ARM (at the moment, at least), this problem does not exist here.

3.4.5 Handling user mode exceptions

When a userland process wishes to do a syscall it issues the “swi 0” instruction
that causes a software interrupt. The handler code sees (from SPSR) that the
previous mode was user mode and can thus use the kernel stack of the current
thread for saving context. Just like in the kernel exception case it calls the C
handler after it has switched to system mode. When interrupt handle() notices
that the interrupt was caused by a syscall it calls syscall handle() that can access
the syscall arguments through saved context and write the return value of the
syscall there as well. When the C handler returns the assembler code switches
back to the userland process. Note that syscalls are handled with interrupts
enabled so a timer interrupt can interrupt a system call handler!

3.5 Virtual memory

(WORK IN PROGRESS)

11

3.5.1 Introduction

In AT91RM9200 board Translation Lookaside Buffer (TLB) is managed by
MMU and not by the operating system. This means that instead of generating
address fault when an address is not found in TLB, the MMU itself traverses
the page table level to find the address. TLB must be flushed if pagetables are
changed. ARM MMU has two page table levels, providing mappings with gran-
ularities ranging from 1 MiB to 1 KiB. This allows a rather complex system, but
only 1 MiB sections and 4 KiB coarse small pages are used in Buenos. Coarse
small pages map 4 KiB sequences of memory divided to smaller 1 KiB subpages
for access privileges. In Buenos all 4 sub-pages of a small coarse page always
have the same access privileges.

3.5.2 Mapping memory

Since the TLB is handled by the CPU, it needs to know where the level 1 trans-
lation table is. Buenos uses a single level 1 translation table at memory address
0x4000. When virtual memory is enabled during the bootup process, several
kernel-accessible mappings are added directly to the level 1 translation table
as 1 MiB section mappings (refer to table 3 for exact mappings). The virtual
addresses from 0x30000000 to 0x7fffffff are reserved for user processes, and
are mapped separately for each process whenever the process is scheduled. User
processes map virtual memory in 4 KiB pages.

Because the ARM MMU only offers 16 protection domains, either all pro-
cesses cannot get their own protection domain, or the number of processes must
be limited to 16. We currently only use one domain for all user processes, which
means that we have to unmap all the pages of the previous process before we
can map in the new process when switching processes.

There is a possibility for performance improvement here: we could dynam-
ically assign protection domains to processes, and thus avoid having to unmap
existing process if the new process already had a domain assigned to it. How-
ever, as mapping a process in or out takes only one memory write for each level
2 translation table of the process (each of which can address one sequential
megabyte of memory), and for our test programs there are usually only three
sections: program code, stack and heap, we decided not to pursue the dynamic
assignment for now.

3.6 Drivers

3.6.1 Introduction

This section documents changes to drivers. In general these fall into two cate-
gories: either we added a new device or we failed to port a an existing driver
to work on ARM. All drivers that have not been mentioned were not modified
and should work on both MIPS and ARM.

12

3.6.2 Flash and ramdisk devices

ARM port of Buenos supports AMD Flash device and a simple ramdisk instead
of YAMS disk device. This is because flash devices are much more common in
ARM world and also there is also no support for YAMS disk devices in Softgun.
As explained in the ABC board documentation writing to the flash is not very
efficient so Buenos supports also a simple RAM disk so that we were actually
able to run the filesystem tests in a reasonable time. We also modified VFS so
that it tries to mount not only DISK devices but also FLASH and RAMDISK
devices on bootup. Flash and ramdisk drivers in “drivers/amdflash.c” and
“drivers/ramdisk.c” respectively.

3.6.3 Timer

MIPS supports a timer that generates an interrupt after a certain number of
CPU clocks have passed. The timer on AT91RM9200 is different. It does have
a System Timer (ST) device that uses Slow Clock (32768 Hz). ST supports
Periodic Interval Timer (PIT) which allows interrupting at most on every Slow
Clock resulting in 32768 Hz timer frequency. The timing is thus not as exact as
compared to MIPS. In Buenos, CONFIG TIMER FREQUENCY controls PIT
interval (100 Hz by default). ST has also Real-time Timer (RTT) to calcu-
late elapsed time. In Buenos RTT is set to increment counter every 32 Slow
Clocks resulting RTT to run on 1024 Hz. This allows counting milliseconds. ST
initialization and handling is in “drivers/at91.c”.

3.6.4 TTY

We did not implement full support for “yamst” style terminal emulation in
Softgun. The current implementation supports only polling I/O so we had to
change also the Buenos TTY driver to use only polling on ARM.

3.6.5 Processor sleeping

Modern operating systems always put the processor to sleep when there are no
active threads. We had planned to implement this also in Buenos but it fails to
put the processor to sleep in idle thread when running in ARM mode because
a lack of support from Softgun. In AT91RM9200 board sleeping is done by
telling the PMC (Power Management Controller) to stop giving clock to CPU
and doesn’t seem to have any effect in Softgun.

3.7 Test cases

We used homework written for the “Operating Systems Project” course as test
cases for our port. This was a compromise, we would have liked to use a dedi-
cated test suite but we really didn’t have time to write one from scratch. For-
tunately for us, we were already familiar with the test cases since two Buenos-
ARM project members were also on the OS project course at the same time.

13

The Buenos-ARM tar ball currently contains solutions to phases 1 and 2 since
later phases do not work yet on ARM.

The first phase covers locks and conditional variables and some simple kernel
programming exercises. The second phase is mainly about implementing system
calls. Solutions to both phases can have been carefully marked with “#ifdef
CHANGED n” where n is the phase number to make it possible to remove the
homework solutions. The third phase was about filesystems and should not
really have ARM related issues. The fourth phase covered paging (swapping)
and could probably be ported to work on ARM. To get more information on the
homework solutions consult the directory buenos/doc. Note that since pagetable
format is different on ARM we had to make some changes to the test cases
to make them work on ARM but the original homework documentation still
assumes MIPS.

3.8 Miscellaneous fixes

This section documents miscellaneous changes that don’t fit well under other
sections:

• The ELF magic number of ARM architecture was added to ELF parser.
We could not find this number from the ELF specification even though
MIPS was mentioned there so we just assumed it would be “40” since that
is what GCC generates.

• There were various endianness issues in TFS, the trivial file system. It
copied buffers from disk to memory and then tried to access the data
through C structures. We added byte-swap functions to lib/libc.c and
fixed the endianness issues in TFS to be able to run our phase 2 test cases
that depended on a working filesystem.

• The random number generator rand.S was written in assembler in Buenos.
We did not understand the reason behind this and we rewrote the random
number generator in C. The new version works on both ARM and MIPS
without modifications.

4 Tutorial: working in the softgun environment

4.1 Building a cross compiler and utilities

To compile binaries for ARM on a non-ARM system you need a cross com-
piler. The upstream Buenos project gives useful instructions on building a cross
compiler for MIPS at http://www.niksula.hut.fi/˜buenos/cross-compiler.html.
Luckily for us we only needed very small changes:

• use target “arm-elf” instead of “mips-elf” (Note that “arm-elf” is little-
endian)

14

• build also GDB since softgun supports it

The following listing shows the exact commands we used to build binutils,
GCC and GDB. The steps are available also as doc/compile utils.sh and assume
POSIX-compatible sh and that “make” is GNU make.

export PREFIX=$HOME/arm-gcc

wget http://www.niksula.hut.fi/~buenos/misc/binutils-2.16.1.tar.gz

wget http://www.niksula.hut.fi/~buenos/misc/gcc-core-4.0.2.tar.gz

wget http://ftp.gnu.org/gnu/gdb/gdb-6.6.tar.gz

tar zxf binutils-2.16.1.tar.gz

tar zxf gcc-core-4.0.2.tar.gz

tar zxf gdb-6.6.tar.gz

mkdir build-binutils

cd build-binutils

../binutils-2.16.1/configure --target=arm-elf --prefix=$PREFIX -v

make

make install

cd ..

export PATH=$PREFIX/bin:$PATH

mkdir build-gcc

cd build-gcc

../gcc-4.0.2/configure --with-gnu-ld --with-gnu-as --without-nls --enable-languages=c --disable-multilib

make

make install

cd ..

mkdir build-gdb

cd build-gdb

../gdb-6.6/configure --target=arm-elf --prefix=$PREFIX

make all

make install

cd ..

4.2 Building buenos, softgun and userland

If you followed the instructions in the previous section you should now have
“arm-elf-ld” and “arm-elf-gcc” in your PATH. Now, extract the buenos-arm
distribution tarball and move to “buenos” directory. In this directory a simple

make ARCH=arm

15

should compile buenos and produce “buenos.ramimage”. If you still have MIPS
cross compilation tools in PATH you can try

make clean

make ARCH=mips

but this is not guaranteed work reliably yet (some changes might have broken
MIPS parts).

The buenos-arm project ships its own version of the softgun ARM emulator
since we have added new devices and a new board (the ABC board). To build
our modified softgun simply issue

make softgun

and verify that ../softgun/softgun was created. Finally, you can build userland
binaries with

make ARCH=arm -C tests

and move them to a filesystem image just like with original Buenos. In partic-
ular, the testcases we used can be copied to “store.file” image using

tests/update.sh

4.3 Booting buenos

A normal way to boot Buenos on ARM is

../softgun/softgun -c softgun/abc.sg -l ram buenos.ramimage \

-l ramdisk store.file -k ‘‘initprog=[vol0]sh’’

which asks softgun to

• load board specific configuration parameters from softgun/abc.sg

• read contents of “buenos.ramimage” and place into a memory region named
“ram” (completely fills the main DRAM chip)

• read contents of the filesystem image “store.file” to region named “ramdisk”
(extra DRAM chip we use as a ramdisk).

• set “initprog=[vol0]sh” to be the Buenos kernel command line in the Yams
compatible command line meta device (upstream softgun obviously does
not support this).

If everything went well you should see the following messages in stdout:

LCA ‘‘ram’’ ‘‘buenos.ramimage’’

LCA ‘‘ramdisk’’ ‘‘store.file’’

Configuration file ‘‘softgun/abc.sg’’ loaded

IO-Thread started

16

Loading ABC Board module

MemMap and IO-Handler Hash initialized

Creating ARM9 CPU with clock 18432000 HZ

- Instruction decoder Initialized: 63424 2112 0 0 0 0 0 0 0

- Register Pointers initialized

GDB server listening on host ‘‘127.0.0.1’’ port 4711

- Create MMU Coprocessor

MMU: Byteorder is now LE

AT91RM9200 MC ‘‘mc’’ created

Flash bank ‘‘flash0’’ type AM29LV128ML Chips 1 writebuf 32

DRAM bank ‘‘dram0’’ with size 1024kB

AT91RM9200 AIC ‘‘aic’’ created

AT91RM9200 Power Management Controller created

YamsDescriptorDev ‘‘desc’’ created

YamsTTY Device ‘‘tty’’ created

YamsDescriptorDev_Register type = 201 vendor = tty

YamsMemInfo Device ‘‘meminfo’’ created

YamsDescriptorDev_Register type = 101 vendor = meminfo

YamsShutdown Device ‘‘shutdown’’ created

YamsDescriptorDev_Register type = 103 vendor = shutdown

YamsShutdown Device ‘‘cpustatus’’ created

YamsDescriptorDev_Register type = c00 vendor = cpustatus

YamsDescriptorDev_Register type = 302 vendor = flash

DRAM bank ‘‘dram1’’ with size 2048kB

YamsDescriptorDev_Register type = 303 vendor = ramdisk

desc[0] type 201 iobase ffff8000 iolen 12 irqcount 0 vendor tty reserved 0 0

desc[1] type 101 iobase ffff800c iolen 4 irqcount 0 vendor meminfo reserved 0 0

desc[2] type 103 iobase ffff8010 iolen 4 irqcount 0 vendor shutdown reserved 0 0

desc[3] type c00 iobase ffff8014 iolen 8 irqcount 0 vendor cpustatu reserved 0 0

desc[4] type 302 iobase 10000000 iolen 1048576 irqcount 0 vendor flash reserved 0 0

desc[5] type 303 iobase 90000000 iolen 2097152 irqcount 0 vendor ramdisk reserved 0 0

YamsHelper Device ‘‘helper’’ created

YamsCommandline Device ‘‘commandline’’ created

Loading buenos.ramimage to 0x80000000 flags 0

Loading store.file to 0x90000000 flags 0

Poll detector Sensivity 10

Starting CPU at 80010000

BUENOS is a University Educational Nutshell Operating System

==

Copyright (C) 2003-2006 Juha Aatrokoski, Timo Lilja,

Leena Salmela, Teemu Takanen, Aleksi Virtanen

See the file COPYING for licensing details.

Initializing memory allocation system

Kernel size is 0x000419ac (268716) bytes

17

System memory size is 0x000c8000 (819200) bytes

Reading boot arguments

Detected 1 CPUs

Initializing AT91RM9200 ARM-board

AT91Pmc: Enabled master clock

Main clock frequency is 18 MHz (18432000 Hz)

Initializing interrupt handling

Initializing threading system

Initializing sleep queue

Initializing semaphores

Initializing locks and condition variables

Initializing process table

Initializing device drivers

Device: Type 0x201 at 0xffff8000 irq 0x0 driver ’Console’

Device: Type 0x101 at 0xffff800c irq 0x0 driver ’System memory information’

Device: Type 0x103 at 0xffff8010 irq 0x0 driver ’System shutdown’

Device: Type 0xc00 at 0xffff8014 irq 0x0 driver ’CPU status’

Device: Type 0x302 at 0x10000000 irq 0x0 driver ’Flash’

amdflash_init: base 10000000 len 100000

Device: Type 0x303 at 0x90000000 irq 0x0 driver ’Ramdisk’

ramdisk_init: base 90000000 len 200000

Initializing virtual filesystem

VFS: Max filesystems: 8, Max open files: 512

Initializing scheduler

Initializing virtual memory

Pagepool: Found 200 pages of size 4096

Pagepool: Static allocation for kernel: 100 pages

Creating initialization thread

Starting threading system and SMP

Mounting filesystems

VFS: No filesystem was found on block device 0x10000000

VFS: TFS initialized on disk at 0x90000000

VFS: Mounted filesystem volume [vol0]

Initializing networking

Starting initial program ’[vol0]sh’

Waiting for init to exit

0 $

Note that since we don’t yet support yamst input is line buffered. To exit
the emulator simply hit ctrl-c or run the halt program:

0 $ halt

Kernel: System shutdown started...

VFS: Entering forceful unmount of all filesystems.

VFS: Forcefully unmounting volume [vol0]

Kernel: System shutdown complete, powering off

shutdown_write value = 0badf00d

18

4.4 Debugging

4.4.1 Using GDB

Softgun has primitive support for GDB remote debugging protocol over a TCP
socket. During our porting efforts we made extensive use of GDB and especially
GUD (Grand Unified Debugger: an Emacs frontend for GDB) and eventually
learned to avoid bugs in softgun’s GDB support.

To get started, copy the following configuration options to your “ /.gdbinit”:

handle SIGPWR noprint nostop

handle SIGXCPU noprint nostop

handle SIGUSR1 noprint nostop

define xsi

si

x/4i $pc

end

define bb

target remote 0:4711

end

set remotetimeout 0

and then boot buenos using softgun with the “-d” option to have softgun wait
for GDB before executing any instructions. Then run “arm-elf-gdb buenos” and
type “bb” (short for “boot buenos”). GDB should print

_start () at init/_boot.S:81

81 ldr r0, .stack_address

Current language: auto; currently asm

since we are in the beginning of bootup assembler code. Let’s place a breakpoint
at tfs read and let softgun continue

(gdb) b tfs_read

Breakpoint 1 at 0x80021c24: file fs/tfs.c, line 540.

(gdb) c

Continuing.

After a short while we have arrived at tfs read and can look at the backtrace

Program received signal SIGINT, Interrupt.

tfs_read (fs=0x80064000, fileid=443, buffer=0x8002d54c, bufsize=52, offset=0) at fs/tfs.c:540

540 tfs_t *tfs = (tfs_t *)fs->internal;

Current language: auto; currently c

(gdb) bt

#0 tfs_read (fs=0x80064000, fileid=443, buffer=0x8002d54c, bufsize=52, offset=0) at fs/tfs.c:540

19

#1 0x80020628 in vfs_read (file=0, buffer=0x8002d54c, bufsize=52) at fs/vfs.c:730

#2 0x8001a238 in elf_parse_header (elf=0x8002d5a4, file=0) at proc/elf.c:70

#3 0x8001ca70 in process_exec (exec_i=2147817909) at proc/process_table.c:305

#4 0x800119dc in thread_goto_userland (usercontext=0x0) at kernel/thread.c:329

Backtrace stopped: previous frame inner to this frame (corrupt stack?)

Note that backtrace does not extend to userland parts. Also note that
softgun prints “softgun gdb interface does not support breakpoints” multiple
times since softgun GDB support really is not at all complete. Because of these
bugs we recommend that you limit your GDB usage to

• commands that only read or write memory (print, set)

• simple breakpoints (break and tbreak). Note that softgun breakpoints are
software breakpoints: softgun overwrites address with a break instruction
and tells gdb when it is executed. This does not work well with self-
modifying code. In particular, do not ever place breakpoints to interrupt
handlers in the beginning of RAM unless you know what you are doing!)

• simple “continue”

• single stepping with (stepi). In particular, the “xsi” macro is useful for
stepping over assembler code. It steps one instruction and then disassem-
bles the following four instructions.

4.4.2 Other debugging strategies

The syscall implementation we used as a testcase supports the boot option
“strace” that causes it to print all executed system calls and their return values.
For example

../softgun/softgun -c softgun/abc.sg -l ram buenos.ramimage \

-l ramdisk store.file -k ‘‘initprog=[vol0]sh strace’’

should print

syscall_WRITE(1, 2147478900, 4)

syscall_WRITE(1, 2147478900, 4) = 4

since the shell printed four characters (“0 $” and newline) to stdout (fd 1) and
writing all characters succeeded.

It is possible to place custom debugging code at the function debug print instruction()
in softgun’s arm9cpu.c. When we were trying to fix subtle virtual memory bugs
we printed the value of the program counter and contents of a few well-chosen
memory addresses on every clock cycle to a file for later analysis. We could then
use e.g.

$ arm-elf-addr2line -e buenos 0x80010400

kernel/cswitch_arm.S:345

to see line number information.

20

5 Appendix A: Educational story on debugging

Buenos

In the demo session Buenos paniced unexpectedly. By trying earlier SVN ver-
sions we tracked the problem down to a commit that changed timer frequency
from 1 tick/s to 100 ticks/s. The bug occured randomly so we suspected a race
condition.

We modified arm9cpu.c to print

fprintf(stderr, ‘‘%08x: %08x: %s\n’’, REG_PC - 4, icode, instr->name);

and then set “armdebug: 1” in softgun/abc.sg so that we could run

../softgun/softgun -c softgun/abc.sg -l ram buenos.ramimage -l ramdisk store.file -k ‘‘initprog=[vol0]sh’’

to collect an execution trace.
We ran “arm-elf-objdump buenos — grep kernel panic” to see that the ad-

dress of kernel panic function was 80010b54 and removed all addresses after this
point from the trace. End of the trace then looked like

80016200: e5c23000: strb C: inside memoryset()

00000010: ea000008: bbl C: data abort handler

00000038: e59fd02c: ldr

0000003c: e12fff1d: blx2,bx

80010138: e59f0028: ldr

8001013c: e1a0100e: mov

80010140: e59f20b4: ldr

80010144: ea000282: bbl

80010b54: e1a0c00d: mov C: _kernel_panic

where “C: “ denotes a comment we added later.
Then we started softgun with

../softgun/softgun -c softgun/abc.sg -l ram buenos.ramimage -l ramdisk store.file -k ‘‘initprog=[vol0]sh’’

and connected to it with arm-elf-gdb. We first set a breakpoint at “memory-
set” and let Buenos continue bootup to that point. At this point the interrupt
vector has been copied into its place, and we can add soft breakpoints there.
This was necessary because we wanted to break at data abort handler in the
interrupt vector. The command we used to add the breakpoint was “break
*0x00000010”.

With a debugger we saw that the offending instruction just before the jump
to the data abort handler was

(gdb) x/i 0x80016200

0x80016200 <memoryset+72>: strb r3, [r2]

and register r2 contained value 0x40000000 which is where userland programs
get their argv. Memoryset was called from process exec, which seemed to create

21

all the appropriate mappings. Also, since the code worked with lower timer
interrupt frequency, this was clearly a race condition and not a systematic error
in process exec. So why weren’t the mappings there, then?

Next we added debug print to the main interrupt handler, which showed the
cause of each interrupt as they happened. We also peppered process exec with
debug prints, telling what it was doing so that we could see where interrupts
happened in relation to code. This was not enough to solve the mystery. Sure,
there were timer interrupts during mapping of memory, but that should not have
broken anything, since the pagetable of the new process was only activated later.

To solve the mystery, we added debug prints to vm activate pagetable to see
when pagetables actually changed. This revealed that actually the pagetable
was activated earlier than we thought, and we wrote the following hypothesis:

Shell does exec for echo. A new thread is started - it runs

process_exec. Process_exec creates a new pagetable for itself, and

also sets it to process_table. Then process_exec starts mapping things

into the new pagetable. At some point while mappings are being

performed, timer interrupt hits and kernel switches to some other

thread. Then it switches back to echo, and since it has a pagetable in

process_table, its pagetable is activated. Process_exec continues

mapping new entries to its process_table-pagetable. When it finishes

mapping things, it activates the process_table pagetable, which is now

ready to be used. However, since Echo’s process_table-pagetable is

already active, vm_activate_pagetable does not do anything, and Bad

Things Happen. In this case command line arguments were mapped only in

process_table-pagetable, not in the global page table, and trying to

initialize them caused data abort.

This was what actually happened, and we fixed the issue as follows:

• We added dirty flag to the pagetable structure on ARM, which is set by
vm map and checked by vm activate pagetable in addition to checking if
the pagetable is the same that is already active. If the pagetable is dirty,
it is activated and the flag is cleared.

• We also disabled interrupts during vm map, since the page table updating
algorithm may be in an inconsistent state while it is updated. This does
not happen on MIPS. On MIPS there is no race because of valid count,
which prevents access from tlb fill to the entry that is being mapped. On
MIPS vm unmap complicates this more, but it is only accessed while hold-
ing global locks (in our MIPS Buenos, anyway), but it is not implemented
on ARM at all.

[3]

References

[1] ARM Limited. ARM Architecture Reference Manual, 2000.

22

[2] Atmel corporation. AT91RM9200:: ARM920T-based Microcontroller, 2006.

[3] example author. Example title.

23

