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ABSTRACT

We present the rationale, design, and implementation of Relaxed
MultiJava (RMJ), a backward-compatible extension of Java that
allows programmers to add new methods to existing classes and to
write multimethods. Previous languages supporting these forms of
extensibility either restrict their usage to a limited set of
programming idioms that can be modularly typechecked (and
modularly compiled) or simply forego modular typechecking
altogether. In contrast, RMJ supports the new language features in a
virtually unrestricted form while still providing mostly-modular
static typechecking and fully-modular compilation. In some cases,
the RMJ compiler will warn that the potential for a type error exists,
but it will still complete compilation. In that case, a custom class
loader transparently performs load-time checking to verify that the
potential error is never realized. RMJ’s compiler and custom loader
cooperate to keep load-time checking costs low. We report on
qualitative and quantitative experience with our implementation of
RMJ.

1. INTRODUCTION

The design of a programming language must balance several
competing goals. One important goal is the ability to organize
software into separate modules, each of which can be reasoned
about (e.g. typechecked, or compiled) separately from the
implementations of other modules. This kind of modular checking
allows software components to be developed and checked for
correctness once and then reliably reused in many future contexts.

Another important goal is the ability to easily extend existing
software with new capabilities, without requiring the existing
software to be modified. Standard object-oriented languages gain
great expressive power by allowing a class to be defined as an
extension (i.e., a subclass) of an existing class, without modifying
the existing class or any of its clients. More advanced object-
oriented languages, including Common Lisp [Steele Jr. 90, Paepcke
93], Dylan [Shalit 96], Cecil [Chambers 92, Chambers 93], AspectJ
[Kiczales et al. 97, Kiczales et al. 01], and Hyper/J [Harrison &
Ossher 93, Ossher & Tarr 00], support several additional forms of
extensibility, such as adding new methods to existing classes,
adding statements before or after existing methods, adding new
superclasses to existing classes, and/or allowing methods to
dynamically dispatch on the run-time classes of their arguments
(which is a kind of extension to those argument classes).

Unfortunately, modular reasoning is in conflict with flexible
extensibility. In general, the more a module can be extended from
the outside, the fewer properties can be proven about the module
separately from those extensions. For example, traditional statically
typed object-oriented languages check that each operation is
properly implemented on a class-by-class basis. This checking

ensures that dispatch errors such as “message not understood” and
“message ambiguous” can never occur on message sends at run
time. But if new methods can be added to existing classes in an
unrestricted manner, then it is easy to introduce message dispatch
errors that elude modular detection [Millstein & Chambers 99].

Because of these conflicts, each language design represents a
particular tradeoff between the amount of extensibility allowed and
the amount of modular typechecking supported. Most existing
languages have been biased toward one or the other extreme. For
example, standard object-oriented languages support modular
class-by-class typechecking but only support subclassing-based
extensibility. At the opposite end of the spectrum, the advanced
languages listed earlier support several additional kinds of
extensibility. However, the cost of this greater extensibility has been
a loss of modular static checking and compilation; these kinds of
languages require whole-program information to perform
typechecking (if they support static typechecking at all) and
perhaps to perform compilation as well. Figure 1 very roughly
sketches these extremes.

In previous work with other colleagues, we developed MultiJava
[Clifton et al. 00, Clifton 01, Mul], an extension to Java that
augments Java’s subclassing-based extensibility with the ability to
add methods (called external methods) to existing classes (called
open classes [Chambers 98]) and the ability to write methods
(called multimethods) that can dispatch on argument classes in
addition to the receiver class. MultiJava supports these additional
features while retaining Java’s modular typechecking and
compilation schemes. To do so, MultiJava restricts the ways in
which the new language features may be used to a particular set of
extensibility idioms that are compatible with modular checking.
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As a consequence of MultiJava’s insistence on fully modular
typechecking, there are several useful forms of extensibility that are
simply disallowed. For example, MultiJava does not allow an
external method to be abstract, even when the method is added to
an existing abstract class. This is because, given a strictly modular
view of the program, in general it is not possible to guarantee that
the new operation is implemented by all concrete subclasses of the
abstract class. Because there is the potential for the new operation
to be incomplete given only partial program information, MultiJava
conservatively rejects the abstract external method declaration.
However, it is quite possible that the programmer has ensured the
new operation is fully implemented. For example, the programmer
may wish to organize code into separate files for different
operations, as opposed to the traditional organization by class. Even
if the programmer properly defines each file’s operation for all
relevant concrete classes in the program, MultiJava will still reject
this organization.

MultiJava also requires all external method declarations that belong
to the same operation to be written in a single file. This is because,
given a strictly modular view, it would not otherwise be possible to
guarantee the absence of duplicate or ambiguous external method
declarations for that operation. Again, because there is the potential
for an ambiguity given only partial program information, MultiJava
conservatively rejects “free-standing” external method declarations.
However, it is also possible that free-standing external methods are
completely safe, and in practice there are programming situations
that need them. For example, a client of two independently
developed libraries may need to provide implementations of
operations defined in one library for concrete classes defined in the
other library; in other words, the client needs to “complete the
diamond” set up by the two independent extensions, as illustrated in
Figure 2. We sometimes refer to free-standing methods as “glue
methods,” since they serve to combine two separate libraries. Even
if the programmer ensures that glue methods do not cause
ambiguities, MultiJava will still reject this programming idiom.

As a final example, MultiJava disallows writing methods that
dispatch (either as an argument of a multimethod or as the receiver
of an external method) on an interface, because MultiJava’s
modular view of a program is not sufficient to guarantee the

absence of ambiguities caused by multiple inheritance. However,
again we have only the potential for an ambiguity; it is quite
possible for the programmer to have arranged the code so that no
multiple-inheritance ambiguities can arise. Unfortunately, it is
common practice for a third-party library to expose only interfaces
to clients, rather than the classes implementing those interfaces.
MultiJava’s restriction prevents clients from augmenting such a
library with new external methods or multimethods.

In this paper we present the design and implementation of Relaxed
MultiJava (RMJ). Like MultiJava, RMJ augments Java with
external methods and multimethods, and it provides modular
typechecking and compilation. At the same time, RMJ supports
nearly arbitrary usage of the new features, including expression of
the three examples described above that MultiJava cannot allow.
These properties are achieved by giving programmers explicit
control over the tradeoff between extensibility and modular
reasoning, rather than having the language legislate one or the other
extreme.

The key technical principle underlying RMJ’s design is to treat the
modular detection of the potential for a message dispatch error as
producing merely a compile-time warning. For any operation
flagged at modular compile time as potentially incompletely or
ambiguously implemented, the programmer can choose to resolve
the problem and acquire a guarantee of modular type safety.
Alternatively, the programmer can retain the extra expressiveness
that triggered the warning. In that case, the operation will undergo
more checking at load time, to ensure that the operation is in fact
properly implemented. We employ a custom class loader to perform
this load-time checking. RMJ’s strategy allows the expression of
many more idioms than are expressible in MultiJava, but it still
ensures that (a) all message dispatch errors are detected no later
than load time, and (b) the programmer is always aware at modular
compile time of the potential for any load-time errors. MultiJava’s
type system falls out as a special case of RMJ, corresponding to a
scenario in which all compile-time message dispatch warnings are
treated as errors by the programmer.

RMJ has the following novel collection of characteristics:

• RMJ is strictly more expressive than MultiJava, which in turn is
strictly more expressive than Java. Aside from a few
compilation challenges discussed later, RMJ allows arbitrary
usage of external methods and multimethods.

• RMJ provides the same modular static assurances as MultiJava,
because RMJ modularly and statically identifies and reports to
the programmer the same problems as MultiJava. If MultiJava
would report no errors to the programmer, then RMJ will report
no errors to the programmer, and no errors can occur, even at
load time. But where MultiJava would reject a program, RMJ
might instead warn of a potential problem, allowing the
programmer to take responsibility for avoiding it.

• For all compile-time warnings, the RMJ class loader will check
at class load time whether the potential error actually occurs for
the program being linked. This check can be viewed as a natural
augmentation of the normal class verification check in the
standard Java class loader. If a class or external method loads
successfully, then there can be no message dispatching errors
involving that class or method. Such load-time checking is
qualitatively better than run-time checking of each message
send, even when (as in Java’s case) class loading can occur at
run time. Run-time checking can never prove that some future
message send won’t fail, whereas load-time checking
guarantees that, for those classes that are loaded, there cannot
be any message send, on any future execution path, that fails.
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Figure 2: Completing the extensibility diamond
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• The combination of compile-time warnings and load-time
checks provides programmers with fine-grained control over
the tradeoff between expressiveness and modular reasoning. If a
static warning is signaled, the programmer can choose to
resolve the problem modularly, as (s)he would be forced to do
in MultiJava, thereby gaining a modular guarantee of type
safety. Alternatively, the programmer can leave the code as
originally written, gaining expressiveness at the cost of
additional responsibility to avoid a load-time error.

• RMJ’s load-time checking typically occurs incrementally as a
program runs, because of Java’s lazy class loading style. RMJ
also includes a “preloader” tool that statically checks an
application for load-time errors, prior to running it.

• As with Java and MultiJava, RMJ source code is compiled into
standard Java class files modularly, one file at a time. Therefore,
RMJ source and compiled files interoperate seamlessly with
Java source and compiled files.

• RMJ’s compiler and class loader collaborate to make the
necessary load-time checking efficient, incremental, and mostly
a “pay-as-you-go” proposition.

An implementation of RMJ is freely available for download and
experimentation [Mul].

The next section presents the design of the RMJ language. Section
3 describes our implementation strategy, including compiler
support and the structure of the RMJ class loader. Section 4
assesses our work, presenting the results of some qualitative
experience using the language and quantitative performance
experiments. Section 5 describes previous work on increasing the
modular extensibility of traditional object-oriented languages.
Section 6 concludes with a discussion of future work.

2. LANGUAGE DESIGN
This section informally describes the RMJ language. Its syntax
extends that of MultiJava for expressing external methods and
multimethods in Java. Both RMJ and MultiJava are explicitly
designed to be as small extensions to Java as possible, to make it
easier for programmers to learn and adopt the new features.
However, these syntactically small extensions offer significant new
abilities to organize and extend programs. (More complete
descriptions of the MultiJava language can be found elsewhere
[Clifton et al. 00, Clifton 01].)

Throughout this section we will use a running example, inspired by
an example due to Krishnamurthi [Krishnamurthi et al. 98].
Imagine that one author develops an abstract Shape class, and two
independent developers each provide concrete implementations for
Rectangle and Circle, as shown in Figure 3. The draw method
relies on the abstract OutputDevice class in the
OutputPackage package (not shown).

2.1 Preliminaries

It is useful to consider the methods in an RMJ (or Java) program to
be implicitly partitioned into a set of operations (sometimes
referred to as generic functions [Moon 86, Bobrow et al. 86,
Paepcke 93]). Each operation is a collection of methods that have
the same name and type signature. A method m that does not
override any other method introduces a new operation, and all
methods that override m belong to its operation. For example, the
draw method in Shape of Figure 3 introduces an operation, and
the other two draw methods in the figure also belong to it.

Each syntactic call site s in a program invokes a single operation’s
methods. The mapping from s to its associated operation o is
determined statically, based on the static types of the receiver and
other arguments to the call. When a message send occurs at s
dynamically, the most-specific applicable method belonging to o is
chosen. In the absence of multimethod dispatch, which is discussed
in Section 2.3, a method is applicable to the message send if the
class of the actual receiver is either the method’s receiver class or
some subclass. The most-specific applicable method is the unique
applicable method that overrides all other applicable methods.

Two kinds of message dispatch errors are possible dynamically. If a
message send has no applicable methods, then a "message not
understood" error occurs. If a message send has applicable methods
but no most-specific one, then a "message ambiguous" error occurs.
Java’s static typechecking guarantees that these errors can never
occur by ensuring that each operation is properly implemented: it
has a most-specific applicable method for every possible type-
correct concrete receiver. For example, a static error would be
signaled if Rectangle’s draw method in Figure 3 were removed.

2.2 External Methods

RMJ and MultiJava allow new methods to be added to existing
classes from the outside. For example, if a client of the Shape
library wishes to view Shapes as providing an area operation,
the client can program such an extended view of Shapes by
writing a new file containing one or more external method
declarations for area, as shown in Figure 4. In this example, the
client knows about the Rectangle and Circle subclasses of

package ShapePackage;

import OutputPackage.*;

public abstract class Shape {

... generic operations on shapes ...

public abstract void draw(OutputDevice d);

}

-----------------------------------------

package RectanglePackage;

import ShapePackage.*;
import OutputPackage.*;

public class Rectangle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice d) {
... code for drawing a Rectangle ...

}

}

-----------------------------------------

package CirclePackage;

import ShapePackage.*;
import OutputPackage.*;

public class Circle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice d) {
... code for drawing a Circle ...

}

}

Figure 3: Shape and two implementations
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Shape and provides appropriate area methods for them, along
with a default method that handles any other Shape subclasses that
might exist.

We call the area operation external because its introducing
method is external. In RMJ and MultiJava, external operations are
scoped. To use the new area operation, client code must import it,
just as classes are imported. The last import declaration in Figure
5 provides Triangle access to the area operation. Once
imported, area is treated just like any other operation on Shapes.
It can be invoked using Java’s normal message-send syntax; there is
no distinction to clients between the "original" operations of
Shape (like draw) and the externally added ones (like area).
Methods of external operations can also be overridden in
subclasses, like other methods. For example, in Figure 5 the
Triangle subclass of Shape includes an overriding
implementation of area as a regular method inside its class
declaration.

The ability to add methods to existing classes is a powerful and
recurring idiom. The visitor design pattern [Gamma et al. 95] was
developed in part to overcome the inability of existing mainstream
languages to add new “visiting” operations to existing classes. The
separation of code into multiple, orthogonal concerns, as in role-
based programming [Andersen & Reenskaug 92, VanHilst &
Notkin 96, Smaragdakis & Batory 98], subject-oriented
programming [Harrison & Ossher 93, Ossher & Tarr 00], and
aspect-oriented programming [Kiczales et al. 97, Kiczales et al.
01], is also dependent on the ability to organize methods not by
class but by concern, and then to add these methods to the
underlying classes from the outside. Even when it would be
possible to put all methods into their class, such as when

developing an application from scratch, it may still be desirable to
modularize some of the source code by operation.

A key strength of MultiJava is that each of the files in Figures 3-5
can be typechecked modularly, given only the interfaces of the
visible classes and external operations, which are those that are
referenced by a given file. For example, the area methods in
Figure 4 are typechecked in the context of the interfaces for the
classes in Figure 3, but without access to Triangle (which may
not even have been written yet). If typechecking passes on each file,
then every operation in the program is guaranteed to be properly
implemented, so run-time message dispatch errors will not occur. In
order to make this strong guarantee, MultiJava imposes significant
limitations on the kinds of external methods that can be written. In
contrast, RMJ provides the same modular checking as MultiJava
but does not impose the associated limitations, instead transparently
providing additional load-time safety checks as necessary. The
following subsections describe three extensions that RMJ makes to
MultiJava’s external methods.

2.2.1 Abstract External Methods

It is natural to allow external methods of abstract classes to be
abstract. For example, it may be desirable to declare Shape’s
area method abstract; Figure 6 illustrates how this is programmed
in RMJ. Abstract external methods free the programmer from
having to provide a default area implementation, for which there
may be no reasonable semantics. They also allow the programmer
to document the requirement that all concrete subclasses provide an
appropriate area implementation.

However, it is difficult to preserve fully modular typechecking in
the face of abstract external methods. For example, suppose the
Triangle class of Figure 5 did not import area nor include an
overriding area method. Then neither the Triangle class nor
the area operation are visible to one another modularly. If the
version of the area operation in Figure 6 is used, we can get a
“message not understood” error at run time, if area is ever
invoked on a Triangle.

MultiJava addresses this problem by simply disallowing abstract
external methods, thereby ensuring that each external operation has
a default method implementation. Unfortunately, a reasonable
default implementation of an operation does not always exist.
Unless the set of operations available on Shape is very rich, it is
unlikely that any useful area default implementation can be
written. Therefore the default implementation’s body will probably
be forced to simply throw an exception. Such a default
implementation satisfies MultiJava’s modular typechecker, but only
by creating the potential for a run-time error which is not much
different than the “message not understood” error that the default
implementation is written to prevent! (MultiJava’s approach works
well for operations where overriding methods merely provide more
efficient or customized implementations of a default algorithm,
such as the union of two sets, but not for operations where the
overriding methods define the appropriate behavior of the operation
for the subclass.)

In contrast, RMJ allows abstract external methods to be written,
signaling only compile-time warnings rather than compile-time
errors. When the file containing the area methods in Figure 6 is
compiled, the programmer will be issued a warning about the
potential for area to be incompletely implemented, but the file
will be compiled successfully. As long as all concrete subclasses of
Shape loaded into the program define or inherit an implementation
of area, the program will be correct and the potential for an
incomplete implementation will not have been realized. However, if

package AreaPackage;

import ShapePackage.*;
import RectanglePackage.*;
import CirclePackage.*;

public double Shape.area() {
... default implementation ...

}

public double Rectangle.area() {
return width() * height();

}

public double Circle.area() {
return Math.PI * radius() * radius();

}

Figure 4: External area methods

package TrianglePackage;

import ShapePackage.*;
import OutputPackage.*;

import AreaPackage.area;

public class Triangle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice d) {
... code for drawing a Triangle ...

}

public double area() {
return base() * height() / 2;

}

}

Figure 5: Subclass area method
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a concrete subclass of Shape is loaded that does not override the
abstract area method declaration, then a load-time verification
error will be reported. RMJ’s combination of compile-time and
load-time checking is sufficient to ensure that all operations are
properly implemented. Therefore, a program that passes RMJ’s
compile-time and load-time checks will never generate any
dispatching errors when messages are sent.

2.2.2 Glue Methods

Suppose again that the area and triangle libraries are two
independent augmentations to the original shape hierarchy, so that
the Triangle class wouldn’t know about the area operation and
wouldn’t have an area method inside it. This scenario is sketched
in Figure 7. As described above, if both the area operation in
Figure 6 and the revised Triangle class are loaded into the same
program, a load-time error will be triggered. To resolve this
problem, the integrator of the two independently developed
libraries must be able to provide additional “glue” code that makes
the libraries work together, i.e., that “completes the diamond.” For
example, Figure 8 shows a new file that defines the external method
enabling the area operation of Figure 6 to interoperate with
Triangle, without modifying either library (or retypechecking
either library or even having source access to either library).1

We refer to the area method in Figure 8 as a glue method, because
it glues together an existing class with an existing operation. More
precisely, a glue method is an external method that does not reside
in the same file that introduces the method’s associated operation.
For example, the area method in Figure 8 belongs to the operation
that was introduced in Figure 6.

Unfortunately, it is difficult with a purely modular view to ensure
that there are not any duplications or ambiguities between the glue
method in Figure 8 and the other methods in the area operation.
For example, although the glue method in Figure 8 is not
ambiguous with the area methods in Figure 6, if an unseen file
contains another area glue method for Triangle, at run time a
“message ambiguous” error will occur when area is invoked on a
Triangle instance. Because of these kinds of problems,
MultiJava does not allow glue methods to be written. It instead
requires all the external methods for a particular operation to be
written in the file that introduces the operation, allowing an
operation’s external methods to be typechecked as a unit, thereby
preserving modular typechecking.

In contrast, RMJ allows glue methods to be written but issues a
compile-time warning that there is the potential for duplicate or
ambiguous methods to appear in other files. RMJ will still compile
the glue methods successfully. The class loader will then verify as
glue methods are loaded that there are no duplicates or ambiguities.

An unusual issue in the design of glue methods is the need to
determine how they interact with Java’s lazy loading capabilities. A
class is typically loaded in Java implementations upon first
reference (e.g. when an instance is created). Similarly, in RMJ and
MultiJava, an external operation is loaded in a program simply by
referencing it by name (e.g. in a message send to that operation).
Referencing an external operation has the effect of loading the
operation’s introducing method, as well as all overriding methods
in the same file. However, by its nature a glue method is written
separately from its operation, so it will not be loaded by this
scheme. Furthermore, individual methods are never named directly
in programs -- a method is always invoked indirectly via message
sends to its associated operation.

To address this problem, our custom class loader accepts a list of all
the files containing glue methods to be included in a given program.
Before loading the program’s first class (the one containing the
main method), the class loader records the existence of each glue
method, but it does not load any glue methods. Each glue method
will be loaded as soon as it is reachable, meaning that the method’s
operation, receiver, and argument types have all been loaded. This
strategy ensures that a glue method is not loaded before it is capable
of being invoked, in keeping with Java’s lazy loading scheme. At
the same time, the strategy still maintains a kind of monotonicity in
the meaning of operations: the method chosen by invoking an
operation with a given receiver and arguments cannot not change
during the course of a program, even if new methods are added to
the operation through later class loading. Implementation details of
our strategy for loading glue methods are provided in Section 3.

1. Even if area had a default implementation, as in Figure 4, glue methods
would still be useful, allowing clients to customize the integration of the
area and triangle libraries.

package AreaPackage;

import ShapePackage.*;
import RectanglePackage.*;
import CirclePackage.*;

public abstract double Shape.area();

public double Rectangle.area() {
return width() * height();

}

public double Circle.area() {
return Math.PI * radius() * radius();

}

Figure 6: Abstract external methods in RMJ
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Triangle.area
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Figure 7: Completing the extensibility diamond

glue

package TriangleAndAreaGluePackage;

import TrianglePackage.*;
import AreaPackage.area;

public double Triangle.area() {
return base() * height() / 2;

}

Figure 8: Glue external methods in RMJ
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While RMJ supports glue methods belonging to external operations
like area, it currently does not support glue methods belonging to
regular “internal” operations like draw. Glue methods for external
operations allow us to integrate separately developed class
hierarchies and external operations, which was our goal. However,
supporting glue methods on internal operations would enable
additional kinds of useful expressiveness, particularly in the
presence of multimethods (described in Section 2.3). Unfortunately,
it is challenging to modularly compile glue methods belonging to
internal operations in a way that is efficient and that interoperates
seamlessly with existing Java source and compiled files. We leave
this to future work.

2.2.3 External Methods on Interfaces

Since external methods are declared and compiled outside of their
receivers, it is reasonable to allow programmers to write external
methods on interfaces in addition to classes. RMJ accordingly
allows this idiom to be expressed. However, external methods on
interfaces pose a challenge for modular typechecking, because
interfaces support multiple inheritance. Therefore, two external
methods on interfaces may appear to be unambiguous but may
cause a run-time “message ambiguous” error if a later class
implements both interfaces [Millstein & Chambers 99].

MultiJava handles this modularity problem by disallowing
overriding external methods from being added to interfaces.
MultiJava allows a new operation to be introduced on an interface
and given a default implementation, but it does not allow overriding
methods to be added to “subinterfaces.” For example, if Shape,
Rectangle, and Circle were defined as interfaces rather than
classes in Figure 3, MultiJava would still allow the area operation
of Figure 4 to be introduced on the Shape interface, but it would
not allow overriding methods to be defined on Rectangle or
Circle. Unfortunately, this restriction prevents clients from
usefully augmenting libraries that export only interfaces, rather
than the underlying implementation classes.

In contrast, RMJ allows arbitrary declaration of external methods
on interfaces, but it produces a compile-time warning for overriding
external methods on an interface. In the scenario where Shape,
Rectangle, and Circle were defined as interfaces rather than
classes, when compiling the collection of area methods from
Figure 4, RMJ would warn that the Rectangle and Circle
methods might be ambiguous for some unseen class.2 The
programmer could then decide to program the area operation in a
different way, to avoid the potential for an ambiguity, or the
programmer could decide that, for this application domain, there is
no potential ambiguity (i.e., that there won’t be any shapes that are
both Rectangles and Circles); the RMJ class loader will
confirm the programmer’s understanding in this case. RMJ gives
the programmer the flexibility to tradeoff modular guarantees
against increased expressiveness on an operation-by-operation
basis.

2.3 Multimethods

RMJ and MultiJava also extend Java by allowing message dispatch
to depend upon the run-time classes of the arguments of the
message in addition to the receiver; this is called multiple
dispatching (as opposed to the single dispatching of traditional
receiver-based method lookup). To exploit multiple dispatching, a

(possibly external) method can add a specializer to one or more of
its arguments, which restricts the method to only apply to message
sends whose arguments are instances of the specializing classes (or
their subclasses); methods with argument specializers are called
multimethods.

For example, consider the draw operation for Shapes in Figure 3.
It may be useful to have special drawing functionality for particular
kinds of output devices. Figure 9 shows revised Rectangle and
Circle classes, each with a new multimethod for drawing on
black-and-white printers. To specify a specializer, a formal
argument is declared using the syntax
StaticType@SpecializerClass FormalName. In the
Rectangle class, the second draw method is applicable only if
the dynamic class of the receiver is Rectangle (or a subclass)
and the dynamic class of the argument is BWPrinter (or a
subclass). Multimethods are completely orthogonal to Java’s static
overloading mechanism, which uses the static types of the
arguments at a call site in determining which operation the site
invokes.

At run time, the most-specific applicable method is invoked, as
described in Section 2.1. In the presence of multimethods, a method
m overrides a method n if m and n differ in either their receiver or
an argument specializer, m’s receiver is either n’s receiver or a
subtype, and for each argument position i, m’s ith specializer is
either n’s ith specializer or a subtype. In our example, if draw is
sent to a Rectangle and a BWPrinter, then both Rectangle
draw methods are applicable and the second one is chosen, since
the methods have the same receiver but the second’s argument
specializer is more specific (an unspecialized argument is
equivalent to one specialized to the static type). Sending the draw
message to a Rectangle and a ColorPrinter, however, will

2. If a multiply inheriting class were visible when compiling the file
containing the area methods, the compiler would generate a compile-
time error, not just a warning.

package RectanglePackage;

import ShapePackage.*;
import OutputPackage.*;

public class Rectangle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice d) {
... code for drawing a Rectangle ...

}

public void draw(OutputDevice@BWPrinter p)
{ ... code for drawing a Rect. on a b&w printer ...
}

}

-----------------------------------------

package CirclePackage;

import ShapePackage.*;
import OutputPackage.*;

public class Circle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice d) {
... code for drawing a Circle ...

}

public void draw(OutputDevice@BWPrinter p)
{ ... code for drawing a Circle on a b&w printer ...
}

}

Figure 9: draw multimethods
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invoke the first Rectangle draw method, since the second one is
not applicable.

Multimethods are very useful for writing code that depends on the
particular classes of more than just the receiver. In addition to
operations like draw, binary operations like equality, addition, and
set union, which accept two arguments of the same type, are good
examples. Multimethods allow the arguments of a binary operation
to be treated symmetrically and allow algorithm selection to be
sensitive to the representations of both arguments. We have also
found multimethods to be quite useful in event-based systems,
where components register themselves to be notified when an event
occurs. Notification consists of the invocation of a component’s
handle operation, passing the event as an argument. To define
how events are dispatched, a component defines some number of
handle multimethods, each of which specializes its event
argument to the particular subclass of event to be handled.

As with external methods, MultiJava is able to modularly typecheck
and compile files containing multimethods. If typechecks succeed
on all files, then MultiJava guarantees that each operation is
properly implemented. In the context of multimethod dispatch, this
means that the operation has a most-specific applicable method for
every possible type-correct tuple consisting of a concrete receiver
and concrete arguments. As with external methods, however,
MultiJava imposes some restrictions on how multimethods are
written to ensure this ability to check multimethods modularly.
Each concrete class is required to define or inherit a singly-
dispatched implementation of each operation that it supports. For
example, in the Rectangle class in Figure 9, the first draw
method, which doesn’t specialize on its argument, is required. If it
were omitted, MultiJava would issue a compile-time error, because
draw could be incompletely implemented if there exist output
devices other than BWPrinter, for example ColorPrinter.
With its strictly modular view, the MultiJava typechecker does not
know whether such classes exist or not, so it conservatively rejects
programs lacking these singly-dispatched default implementations.
Unfortunately, as with the earlier area operation, it may be
difficult to write a default implementation of the draw operation
that does not simply throw an exception.

RMJ treats the absence of singly-dispatched default methods in a
concrete subclass as a compile-time warning rather than a compile-
time error. In our example, the default draw methods in
Rectangle and Circle can be omitted, leaving only the draw
multimethods, as in Figure 10. When each of the Rectangle and
Circle files is compiled, as long as draw is implemented for all
visible concrete subclasses of OutputDevice, the RMJ compiler
will issue only a warning that there is the potential for draw to be
incompletely implemented, but the file will be compiled
successfully. As long as BWPrinter and its subclasses are the
only concrete kinds of output devices loaded into the program, the
program will be correct and the potential for an incomplete
implementation will not be realized. However, if a different
concrete subclass of OutputDevice is loaded, then a load-time
verification error will be reported. As before, RMJ’s combination of
compile-time and load-time checking is sufficient to ensure that all
operations are properly implemented. Therefore, a program that
passes RMJ’s compile-time and load-time checks will never
generate any dispatching errors when messages are sent.

MultiJava also requires that a multimethod’s argument specializer
be a class, not an interface. This restriction ensures that there are no
multiple-inheritance ambiguities that elude modular detection, just
as did the restriction that overriding external methods be on classes,
not interfaces. If the different kinds of printers were exported from

OutputPackage as interfaces rather than classes, then it would
not be possible to write draw multimethods specializing on
BWPrinter.

In contrast, RMJ allows arguments to specialize on interfaces as
well as classes. Interface specialization leads to compile-time
warnings about potential ambiguities (or compile-time errors about
any visible ambiguities), backed up by load-time checking to verify
that the potential ambiguities never occur in practice.

2.4 Discussion

In RMJ we have identified those restrictions of MultiJava that
reflect only the potential for a message dispatch error and replaced
them with warnings. RMJ still reports all real and potential errors as
each file is modularly compiled. This contrasts with other systems
that have comparable support for external methods or
multimethods, which require whole-program information in order
to typecheck and/or compile a file. For example, a class in AspectJ
may be typechecked and compiled only when given all of the
aspects that add external methods (among other things) to the class.
RMJ’s modular checking is particularly important when compiling
library files whose clients are not yet known.

RMJ greatly expands the practical utility of external methods and
multimethods as compared with MultiJava. External methods and
multimethods can be written and organized in any grouping
desired. Those organizations that satisfy MultiJava’s modular
typechecking restrictions are proven safe entirely modularly. The
remainder must be confirmed with a load-time check, but in many
cases, the only feasible alternatives to load-time checking are
methods that simply throw run-time exceptions. The specialized
class loader that performs these load-time checks in the context of
Java’s incremental class loading strategy is described in the next
section.

RMJ’s type system can be viewed as a variant of the soft typing
approach [Cartwright & Fagan 91], but with load-time checks
instead of run-time checks. Soft typing systems attempt to perform
as much static checking as possible on programs written in a
dynamically typed language like Scheme. Our work takes the

package RectanglePackage;

import ShapePackage.*;
import OutputPackage.*;

public class Rectangle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice@BWPrinter p)
{ ... code for drawing a Rect. on a b&w printer ...
}

}

-----------------------------------------

package CirclePackage;

import ShapePackage.*;
import OutputPackage.*;

public class Circle extends Shape {

... implementations of Shape methods ...

public void draw(OutputDevice@BWPrinter p)
{ ... code for drawing a Circle on a b&w printer ...
}

}

Figure 10: draw multimethods in RMJ
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opposite perspective: we relax a language that supports modular
static typechecking to allow more expressiveness, inserting as few
load-time checks as are necessary to ensure safety.

RMJ can serve as a general platform for experimenting with
modular type systems for languages with external methods and
multimethods. New modular type systems can be evaluated without
changing the underlying expressiveness of the language. Rather,
what changes is simply the factoring of the checks between compile
time and load time. This approach would also be useful for other
kinds of expressive languages that pose a challenge for modular
typechecking, including aspect-oriented languages.

3. COMPILATION AND CLASS LOADING
RMJ source code compiles into regular Java bytecode classes,
which are loaded by a custom class loader running on a standard
Java virtual machine. This section explains how bytecode for RMJ
is generated, loaded, and verified. We begin by briefly reviewing
how MultiJava’s language extensions are compiled, then explain
the additional compilation techniques used for RMJ, and finally
describe RMJ’s custom class loader. A key feature of our
compilation strategy is that the custom class loader only performs
extra checking on an operation if the compiler was forced to emit a
warning message about potential incompleteness or ambiguity
problems for that operation. If the compiler can verify the
correctness of all classes modularly, then the custom class loader
will perform no load-time checking.

3.1 Compile-Time Extensions in MultiJava

RMJ is able to reuse most of the compilation techniques of
MultiJava. To implement multiple dispatching, MultiJava merges
all the methods that have the same receiver class but different
argument class specializers into a single singly-dispatched bytecode
method, with a series of instanceof tests selecting the right
branch containing the body of one of the original multimethods.
Clients continue to invoke operations containing multimethods in
exactly the same way as before, thereby shielding clients from
whether or not some operation has multimethods. This design also
allows a MultiJava class to extend a regular Java class and override
a regular Java method with a MultiJava multimethod, all
transparently to the Java class and its existing Java clients.

To implement external operations, MultiJava generates an anchor
class representing the operation. The external methods declared in
the file that introduces the external operation are merged into a
single bytecode method named apply, in which the original
receiver has been converted into an additional argument. This
apply method selects the right branch using a series of
instanceof tests of the original receiver plus any other
arguments with specializer classes.

As shown in Figure 5, subclasses of the receiver of an external
operation can import the operation and then add additional methods
to it. To allow an external operation to be extended by later classes
in this way, the apply bytecode method for the group of methods

on an external operation from a single source file is put in a
dispatcher class; the external operation’s anchor class then
maintains a linked list of dispatcher class instances, in order of most
specific to least specific. If a subclass adds one or more new
methods to an existing external operation, the subclass methods are
compiled into an apply method in their own dispatcher class,
which is added to the front of the anchor class’s dispatcher list as
part of the subclass’s static initialization code.

For example, consider the area external operation defined in
Figure 4. The operation gets its own anchor class, and the three
methods are merged into an apply method in a new dispatcher
class. When Triangle of Figure 5 is compiled, a dispatcher class
for its area method is created as well. Triangle’s static
initialization code eventually adds this dispatcher to the front of the
anchor class’s dispatcher list, resulting in the structure illustrated in
Figure 11. When area is invoked, the head of the anchor class’s
list of dispatchers is fetched, and its apply method is invoked. If
none of the methods of the head dispatcher applies, then the apply
method fetches the next dispatcher in the chain, and invokes its
apply method recursively. Eventually, an applicable method will
be found, because modular static typechecking has verified that the
operation is completely implemented.3

More details on the implementation techniques of MultiJava are
available in earlier papers [Clifton et al. 00, Clifton 01].

3.2 Compile-Time Extensions in RMJ

The RMJ compiler has two code-generation tasks beyond what the
MultiJava compiler does. First, the RMJ compiler must generate
appropriate bytecode for the additional features not supported by
MultiJava. Second, the RMJ compiler must record information in
the resulting class files to tell the RMJ class loader what checks to
perform when each class is loaded. This information is conveyed
through the extensible annotation mechanism already supported by
Java’s class file format [Lindholm & Yellin 97]. That mechanism
allows arbitrary strings to be included in compiled class files,
indexed by user-defined keys.

3.2.1 Compiling RMJ Extensions

RMJ allows the method introducing an external operation to be
abstract, as illustrated in Figure 6. Bytecode generation for abstract
methods is simple: the abstract method is treated as if it has a body
that simply throws a RuntimeException. A similar technique
can be used to generate code when a concrete class lacks a singly
dispatched method for some operation, as illustrated in Figure 10.
Bytecode for the implicit abstract method can be generated, with a
body that throws a RuntimeException.

3. This “chain of responsibility” [Gamma et al. 95] style works correctly and
can be generated completely modularly and statically, but it is not as
efficient as regular method invocation in Java. An alternative strategy
worth investigating would generate a more efficient custom dispatcher
method at load time, based on the current set of loaded dispatchers.

Figure 11: Structure of the implementation of area from Figures 4 and 5

anchor for area

function field

dispatcher for original area methods

apply method

dispatcher for area on Triangle

apply method

old_function field
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RMJ allows the receiver or an argument specializer of a method to
be an interface. Bytecode generation is unaffected by this relaxation
of MultiJava, since the existing strategy of testing for a method’s
applicability using instanceof tests works for interfaces as well
as classes.

Finally, RMJ allows a method to be declared in a separate file from
both its receiver class and its (external) operation. We compile each
such glue method into an apply method in its own dispatcher
class; this enables each glue method to be loaded separately, as it
becomes reachable. A source file containing several glue methods
is itself compiled into a glue anchor class akin to an external
operation’s anchor class. The glue anchor class is used to provide
annotations to the class loader about the new glue methods, as
described below.

In RMJ, it is possible for glue methods to override some existing
methods and to be overridden by other existing methods. For
example, suppose C is a subclass of B, which is a subclass of A. An
external operation could initially declare methods for receivers C
and A, with a later glue method implementing the operation for B.
However, the MultiJava implementation merges all the external
methods declared in a single file into a single dispatcher class, with
a single apply method, and this strategy does not allow
“insertion” of methods into the middle of the specificity order. To
fix this problem, RMJ compiles each method of an external
operation into its own independent dispatcher class with its own
apply method. In this way, all methods of external operations are
treated as if they are glue methods, for the purposes of compilation.

3.2.2 Bytecode Annotations

The compiler must inform the class loader whenever load-time
completeness or ambiguity checking is required for an operation. In
that case, the compiler must additionally provide the loader with
information about the methods declared on that operation, to enable
the checking to be performed. Both of these tasks are accomplished
via method annotations. The RMJ compiler produces a method
annotation for each method in the program that belongs to an
external operation. Each method anotation indicates the operation
that the method is part of, the receiver and argument specializers (if
any), the fully qualified names of its anchor and dispatcher classes,
and whether or not the method is abstract. The annotation for a
method declared in the file introducing the external operation is
placed in the operation’s anchor class bytecode. The annotation for
an internal method added to the external operation is placed in the
bytecode for the new method’s receiver. Finally, the annotation for
a glue method is placed in the associated glue anchor class
bytecode.

Method annotations provide enough information for the loader to
perform the necessary checking on external operations. For
example, if a method annotation for an abstract external method is
observed, then the loader will know to perform completeness
checking. This checking relies on the other method annotations of
the operation being checked, to decide whether the operation is
fully implemented. Similarly, the appearance of a method
annotation for a glue method or a method that specializes on an
interface indicates that the associated operation requires ambiguity
checking.

Method annotations are also generated for methods of regular
internal operations, in order for the loader to check their
completeness and ambiguity if necessary. It would be sufficient to
generate an annotation for each method in the program, but this
would be a large number of annotations. Worse, it wouldn’t allow
existing class files compiled by a regular Java (or MultiJava)

compiler to be used seamlessly (e.g., subclassed from) in RMJ
programs.

Fortunately, the RMJ compiler can safely generate annotations for
methods of internal operations on demand. First, if a concrete class
does not declare or inherit a singly dispatched method for some
operation, we generate a method annotation for the implicit abstract
singly dispatched method. This alerts the class loader that
completeness checking is necessary. We also generate method
annotations for the multimethods on this operation declared in the
current class. These annotations are sufficient for the loader to
safely and precisely check completeness.

Second, the RMJ compiler must generate annotations to allow
ambiguity checking of an internal operation whose methods
specialize on interfaces. When such a method is observed, method
annotations are created for it and for all other methods on its
operation declared in the current class. For proper ambiguity
checking of the operation, annotations are also needed for all
methods of the operation in any subclasses and the superclass of the
current class. Therefore, the existence of the method specializing
on an interface triggers the compiler to generate appropriate
method annotations in each subclass when it is compiled. However,
the superclass has already been compiled, so it will in general not
contain such annotations. Instead, we include the annotations for
superclass methods in the bytecode for the current class. In this
way, we generate the proper method annotations to enable load-
time ambiguity checking, without either requiring existing code to
be recompiled or generating method annotations for operations that
do not require load-time checking.

3.3 Load-Time Extensions in RMJ

RMJ uses a custom class loader, named RMJClassLoader, that
subclasses Java’s standard ClassLoader class [Gosling et al.
00], to load the classes used in an RMJ program. This class loader
observes each class loaded into the program and examines it for
RMJ annotations.

The RMJ class loader is invoked in the following manner:
% java -Drmj.glue=<glue> RMJClassLoader

<Main> <args>

As described earlier, the class loader accepts a list of the glue files
to be included in the current program; this is set via the rmj.glue
property. Glue methods are processed in two phases: the first phase
registers the existence of a glue method, and the second phase loads
the glue method’s dispatcher class and checks for redundant or
ambiguously defined glue methods. The loader performs the first
phase immediately, using the method annotations in the files named
in the rmj.glue property. Each glue method is not actually
loaded until it becomes reachable: its operation’s anchor class,
receiver, and argument specializers have been loaded. This strategy
ensures that each glue method is only loaded if necessary and that it
gets inserted in the appropriate place in the chain of dispatchers.
Details on registering and loading glue methods are provided in
Section 3.3.2.

Once all the glue is registered, the loader starts the RMJ program by
loading the <Main> class and invoking its main method with the
given <args>. RMJClassLoader will be the defining class
loader [Liang & Bracha 98] for <Main>, which means that any
classes referenced from that class will also be loaded with
RMJClassLoader, transitively.

The key method of RMJClassLoader is loadClass, which
takes the fully qualified name of a class to load, finds the bytecode
implementation of the class, performs necessary RMJ checks on the
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class, and creates and returns the Class object representing the
loaded class. (This same process applies to interfaces as well. From
the perspective of the virtual machine, interfaces are simply a
special kind of abstract class. We adopt this perspective throughout
the rest of this section, referring to both classes and interfaces
generically as classes.) The overall procedure of
RMJClassLoader’s loadClass method is sketched in Figure
12.

RMJClassLoader cannot be the defining loader for system
classes, or else the classes will not be able to be passed to system
methods. In the current implementation of RMJClassLoader,
any class in the java package is loaded by the regular system class
loader. Otherwise, we use the normal system mechanisms to find
the class’s bytes. The class is then installed in the JVM using the
inherited defineClass method, with RMJClassLoader as the
defining loader, returning the new class object. The boldface
operations in the loadClass method support RMJ’s load-time
checking and are described in the rest of this section.

Java’s custom class loader mechanisms have enabled us to include
additional load-time checking in the Java virtual machine.
However, custom class loaders were intended to support multiple
namespaces, not as a way for language designers to implement
language extensions [Bracha 03], and they do not gracefully
support all that we and other language designers might like. For
example, custom class loaders for different extensions cannot be
composed nicely. We view the design of a more flexible mechanism
in Java for composable load-time checkers and code transformers to
be an interesting area for future work.

3.3.1 Registering Classes

In order to perform completeness and ambiguity checking
incrementally as classes are loaded, the loader maintains a number
of data structures, which are described as needed in this section.
The registerClass method updates these data structures
appropriately whenever a new class is loaded. Aside from
registering the existence of the new class, registerClass also
reads any method annotations in the class and updates the data
structures to reflect their existence. As mentioned earlier, all
methods of external operations are treated as if they are glue
methods for the purposes of compilation. Therefore, when
registerClass finds an annotation for a method added to an

external operation, either a method in the file introducing the
operation or a method in a subclass of the receiver, it registers the
method exactly as glue methods from the rmj.glue property are
registered. The methods will be loaded as they become reachable.

The RMJ class loader will not be the defining class loader for a
system class. Consequently, classes referenced by the system class,
such as its ancestor classes, may not be observed by the RMJ class
loader. To partially account for this omission, the
registerSuperclasses method calls registerClass on
each of a system class’s superclasses, allowing the RMJ class
loader’s data structures to reflect their existence. However, it is still
possible for some relevant system classes to be missed, which can
cause the loader to perform fewer checks than necessary to ensure
correctness. An improved composable class loader mechanism
would provide a way for custom class loaders to at least observe
that these internal system classes have been loaded.

3.3.2 Registering and Loading Methods of External
Operations

As described above, when an annotation for a method belonging to
an external operation is found, either via the rmj.glue property
or in some class, that method is registered. Registration consists in
the creation of an external method descriptor for the method, which
includes the fully qualified names of the external method’s anchor
class, dispatcher class, receiver class, and argument specializer
classes (or the static type of an argument, if it is unspecialized).

The new method will not be loaded until it is reachable. Therefore,
the loader maintains an external method registry, which maps not-
yet-loaded anchor, receiver, and argument specializer class names
to the external method descriptors that are awaiting their loading.
As part of a method’s registration, the registry is updated to reflect
the classes upon which the new method is waiting. Finally, to speed
external method loading (described next), each external method
descriptor also stores a count of the number of distinct not-yet-
loaded classes that it is waiting on. For example, when the glue
method in Figure 8 is registered, it initally is waiting for the area
operation’s anchor class and the Triangle class, assuming
neither class has yet been loaded. The external method registry is
therefore updated to reflect these dependencies, and the method’s
descriptor gets a count of two.

The registerClass method, described earlier, is responsible
for updating the external method registry to reflect the loading of a
new class. That is, any mappings from the new class’s name in the
registry are removed, and the mapped-to external method
descriptors have their counts decremented. The
loadReachableMethods operation then loads any method that
has now become reachable, i.e. whose associated descriptor’s count
is zero. Before loading the method, it is checked for unambiguity,
as described later. Multiple methods of an external operation can
become reachable simultaneously. In that case,
loadReachableMethods loads the dispatcher classes of less-
specific external methods and prepends them to the operation’s
dispatcher chain before those of more-specific external methods, to
ensure that overriding methods are always in front of their
overridden methods on the chain.

3.3.3 Verifying Completeness

The verifyCompleteness method is used to ensure that
operations remain complete in the face of abstract external methods
and concrete classes that implicitly contain abstract singly
dispatched methods. The loader must ensure that, for each such
abstract method, for each tuple of concrete receiver and argument

Class loadClass(String fullName) {

Class c;
if (fullName.startsWith("java.")) {
c = findSystemClass(fullName);

registerSuperclasses(c);

} else {
String fileName = asFileName(fullName);
URL url = getResource(fileName);
byte[] bytes = ..read contents of url..;

c = defineClass(bytes);
}

registerClass(c);

loadReachableMethods(c);

verifyCompleteness(c);

return c;

}

Figure 12: RMJClassLoader’s loadClass method
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classes that conforms to the abstract method’s type signature, the
abstract method is overridden by some loaded concrete method that
is applicable to the tuple. To reduce the load-time work that is
performed, only tuples consisting of top concrete classes of the
abstract method’s receiver and argument types need be considered.
A concrete class C is a top concrete class of an abstract class D if
there is no concrete class E (possibly identical to D) that is a
superclass of C and a (possibly reflexive) subclass of D.4 If an
operation has an incompleteness, it will be revealed by a tuple of
top concrete classes. By similar reasoning, only top concrete
methods of the abstract method need to be considered for
applicability to these tuples. A top concrete method is a concrete
method that directly overrides the abstract method, without any
intervening overriding concrete methods.

Completeness checking in verifyCompleteness uses an
incremental algorithm that works as each abstract method
annotation and concrete class is loaded, without any redundant
checking. When a new abstract method is loaded that needs
completeness checking, the loader constructs all the conforming
tuples of top concrete classes, based on the set of classes currently
loaded, and checks that each has an applicable loaded method that
overrides the abstract method. When a new concrete class C is
loaded, the loader finds all loaded abstract methods that need
completeness checking and have a receiver or argument type for
which C is a top concrete class. For each such abstract method, the
loader constructs all tuples of top concrete classes that contain C in
some position and ensures that each has an applicable loaded
method that overrides the abstract method.

For example, suppose the area methods in Figure 6 are loaded in
an RMJ program. Assuming the Shape, Rectangle, and
Circle classes have already been loaded,
verifyCompleteness will check for the existence of area
methods applicable to Rectangle and Circle, as each is a top
concrete class of Shape. The method annotations in the area
operation’s anchor class allow this checking to succeed. When the
Triangle class is later loaded, verifyCompleteness will
check for the existence of an area method applicable to
Triangle. If there is a subclass area method for Triangle, as
in Figure 5, or a glue method for Triangle, as in Figure 8, it will
have already been loaded by loadReachableMethods and will
therefore be properly accounted for.

Our incremental completeness algorithm resembles the Rapid Type
Analysis algorithm [Bacon & Sweeney 96]. Both algorithms
maintain information about a set of reachable classes and a set of
reachable operations. Whenever either set is extended, the new
element is checked against all the existing elements of the other set.
The algorithm is guaranteed at every point in time to have checked
all pairs in the cartesian product of the two sets, without any
duplicate checking.

The class loader maintains several data structures to make the
checking of verifyCompleteness efficient. They are updated
incrementally by registerClass as each class is loaded. The
data structures are as follows:

• a mapping from each loaded abstract class to its set of loaded
top concrete subclasses

• a mapping from each loaded abstract method needing
completeness checking to its set of top concrete methods

• a mapping from each loaded abstract class to the set of loaded
abstract methods needing completeness checking whose

receiver and argument types include the abstract class

For maximum flexibility, our verifyCompleteness
implementation treats a completeness error as a non-fatal warning,
and still allows the program to continue execution. If the
incomplete scenario ever occurs at run time, then the exception that
was compiled as the body of the abstract method will be thrown. It
would be straightforward to parameterize the loader to allow
different ways of treating load-time errors.

3.3.4 Verifying Unambiguity

As with completeness checking, the loader performs ambiguity
checking on an operation incrementally, as each class is loaded.
The heart of the loader’s algorithm for incremental ambiguity
checking is a routine that checks a pair of methods for ambiguity
with one another. This algorithm can be used equally well to
perform ambiguity checking at compile time, on the visible
methods of an operation [Millstein et al. 02]. First, the receiver and
argument specializers (C1,...,Cn) and (D1,...,Dn) for each of the two
methods are retrieved. For now, we assume that the receivers and
specializers are all classes; the generalization to interfaces is
presented below. The algorithm checks several cases:

• If (C1,...,Cn) = (D1,...,Dn), then the two methods are duplicates,
and an ambiguity error is reported.

• Else if each Ci inherits from the corresponding Di, then the first
method overrides the second, and the methods are not
ambiguous.

• Else if each Di inherits from the corresponding Ci, then the
second method overrides the first, and the methods are not
ambiguous.

• Else if for each i, Ci and Di are related, meaning that one
inherits from the other, then the two methods may be
ambiguous, because they are applicable to overlapping sets of
argument tuples. This overlap is succinctly characterized by
their intersection tuple (int(C1,D1),...,int(Cn,Dn)), where
int(Ci,Di) returns whichever of Ci or Di inherits from the other.
The methods’ overlap is not a problem as long as there exists a
third method that is applicable to the intersection tuple and
overrides the original two methods: the third method resolves
the ambiguity of the first two. If such a method has been loaded,
then the original two methods are unambiguous, and otherwise
an ambiguity error is reported.

• Else the methods are disjoint: they are applicable to disjoint sets
of argument tuples, and so they are unambiguous.

As a simple example, consider the area methods in Figure 4. All
three pairs of methods pass the above check. The methods for
Rectangle and Circle are disjoint from one another, because
neither receiver inherits from the other. Further, each of these
methods overrides the method for Shape. To illustrate intersection
tuples, suppose that the Shape class of Figure 3 contained a
method for drawing black-and-white printers:

public void draw(OutputDevice@BWPrinter p)
{ ... code for drawing a Shape on a b&w printer ... }

The first draw method of Rectangle in Figure 9 overlaps with
the above method, and the intersection tuple is (Rectangle,
BWPrinter). Without the second draw method in Rectangle,
whose receiver and argument specializer form exactly the
intersection tuple, the original two methods would cause an
ambiguity error to occur when draw is invoked on the intersection
tuple.

As discussed in Section 2, an operation must undergo load-time
ambiguity checking if either the operation has glue methods or has

4. Recall that throughout this subsection we are treating interfaces as special
kinds of abstract classes.
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methods that specialize on interfaces. We discuss each situation in
turn.

3.3.4.1 Glue Methods

The loader records the set of methods that have been loaded for
each operation. Then, just before loadReachableMethods
loads the dispatcher class for a method belonging to an external
operation, the new method is checked for ambiguity against each of
the previously loaded methods with which it may be ambiguous,
using the algorithm described above. It would be conservative for
the loader to check the new method for ambiguity against each of
the previously loaded methods. However, there is no need to
recheck a pair of methods for ambiguity if their unambiguity was
already established at modular compile time by the RMJ compiler.
Any pair of methods that were simultaneously visible by the RMJ
compiler during its compile-time checks on some file need not be
rechecked at load time. Therefore, the only load-time checking that
is required is between pairs of methods where one method is a glue
method and the other method is either another glue method or a
method written inside a class (such as the area method in Figure
5).

To exploit this observation, each external operation’s list of
previously loaded methods is partitioned into three separate lists,
based on whether the method came from the source file introducing
the external operation (a base method), the source file of a subclass
that added a method to the external operation (a subclass method),
or a glue method source file (a glue method); the method’s
annotation indicates which category the method is in. Whenever a
glue method is loaded by loadReachableMethods, it is
checked for ambiguity with those methods on the glue and subclass
lists. Whenever a subclass method is loaded, it is checked for
ambiguity with those methods on the glue list. No other
combinations need load-time checking. In this way, operations with
no glue methods will incur no load-time ambiguity checking.

3.3.4.2 Interface Specializers

Each operation containing methods that specialize on interfaces
must be checked for unambiguity at load-time. To do so, we first
generalize the routine described above for checking pairwise
ambiguity of methods, to properly handle multiple inheritance. In
particular, we now take into account the fact that two interfaces (or
one interface and one class) can have a common subclass without
themselves being related. Only the second-to-last case in the earlier
routine needs to be modified. First, the case should apply when for
each i, either Ci and Di are related, as before, or there exists a
loaded concrete class that inherits from both Ci and Di. In the latter
case, we define int(Ci,Di) to be the set of loaded concrete classes
that inherits from both Ci and Di. Finally, there are now multiple
intersection tuples, each requiring a loaded resolving method,
formed by taking the n-way cartesian product of the int(Ci,Di) sets.

The revised routine depends both on the set of currently loaded
methods (in order to find resolving methods) and on the set of
currently loaded concrete classes (in order to compute int(Ci,Di)).
Similar to incremental completeness checking, the loader must
therefore incrementally check unambiguity of an operation
containing methods with interface specializers as each of these sets
changes. If the operation is external, unambiguity of a new method
with respect to previously loaded methods is checked by
loadReachableMethods, before the new method is loaded. If
the operation is internal, unambiguity of a new method is checked
when the method’s annotation is found by registerClass.
Finally, the custom class loader maintains a mapping from loaded
interfaces to the loaded methods that specialize (either at the

receiver or an argument) on that interface; this mapping is updated
by registerClass as classes are loaded. When a concrete class
that implements an interface is loaded and registered, each method
on the interface’s list is retrieved and rechecked for ambiguity with
respect to the other loaded methods of its operation.

As with the ambiguity checking of operations containing glue
methods, we can optimize which pairs of methods need to be
checked for operations containing interface-specializing methods.
Only pairs of methods where at least one has an interface
specializer need to be checked for ambiguity by the RMJ loader.5

All other pairs are guaranteed to be unambiguous because of the
RMJ compiler’s modular checks. For external interface-specializing
operations, our optimization requires that a method specializing on
an interface be checked against all previously loaded methods,
including base methods. Although each method was checked
against the base methods modularly by the RMJ compiler, the
compile-time checks may have missed ambiguities caused by
unseen concrete classes that inherit from interfaces.

3.3.4.3 Run-time Ambiguity Checking

As with completeness errors, to give programmers increased
flexibility, ambiguity errors are treated by our RMJ class loader as
non-fatal warnings, and the program is allowed to continue.
Whenever a load-time ambiguity error is reported for some
operation, a special ambiguity dispatcher class, whose apply
method throws a RuntimeException, is instantiated and
prepended to the operation’s dispatcher list. If the ambiguity is
caused by duplicate methods, then the ambiguity dispatcher’s
apply method has the same receiver and argument specializers as
each of the duplicates. If the ambiguity is caused by the lack of a
method for an intersection tuple, then the ambiguity dispatcher’s
apply method has the same receiver and argument specializers as
the intersection tuple. In this way, the ambiguity dispatchers ensure
that an exception will be thrown whenever a run-time ambiguity
occurs. This design only works for external operations; if the load-
time ambiguity error for an internal operation is ignored by the
programmer and the ambiguity is encountered at run time, one of
the ambiguously defined methods will be invoked arbitrarily.

3.4 RMJ Preloader

When developing an application in RMJ, the programmer may wish
to exploit expressiveness that cannot be checked purely modularly,
at the cost of taking on the responsibility of avoiding load-time
incompletenesses and ambiguities. The RMJ class loader will check
for these problems when the program is run on one particular input.
However, it would also be useful to know whether or not a program
can incur load-time errors at all, for any possible input. For
example, a developer of shrink-wrapped software might wish to
verify, once and for all, that no load-time errors can occur for a
program. As another example, a programmer integrating two
libraries may wish to find places where those libraries require glue
in order to avoid load-time errors.

To assist in this kind of checking, we have developed a “preloader”
tool. The preloader is invoked like the custom class loader, except
that no arguments are given:

% java java -Drmj.glue=<glue> RMJPreLoader
<Main>

5. For an operation that has both glue methods and interface-specializing
methods, the loader must check any pair that is not eliminated by both
optimizations.
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The preloader starts by registering all the glue listed in the
rmj.glue property, just as RMJClassLoader does. The
preloader then exhaustively explores all classes transitively
referenced from the <Main> class, ignoring the application’s
actual flow of control. The preloader performs all the RMJ load-
time checks as it visits each class. Even though classes may be
visited by the preloader in a different order than in a real execution,
and more classes may be visited by the preloader than in a real
execution, the preloader is guaranteed to discover all potential load-
time hazards of a real execution, with one caveat described below.
If the preloader reports a hazard, then the programmer is given
early warning about a situation needing attention. If the preloader
reports no hazards, then the programmer has increased confidence
that the program will work correctly at run time.

The preloader’s one caveat is that it only considers statically
referenced classes. It will not examine classes loaded only through
reflective mechanisms such as Class.forName. Many
applications only reference classes statically, and most others only
rarely reference classes through reflection, so this limitation should
not greatly hinder the preloader’s accuracy. Further, the places in a
program where this limitation arises are clear by simply scanning
the source text (or bytecodes).

3.5 Discussion

Several interesting issues arise in the context of load-time
typechecking. RMJ’s load-time checking has been designed to
work in an incremental fashion, in order to fit nicely in the context
of Java’s support for lazy class loading. The Java language does not
mandate that such an on-demand loading strategy be used. For
example, an implementation is free to load several classes as a
group or prefetch classes for later use [Gosling-etal00]. The RMJ
class loader will function properly regardless of an
implementation’s loading strategy. However, because different Java
implementations may load classes in different orders, they may also
trigger RMJ’s load-time errors in different orders.

One way to resolve this problem is to make use of the fact that Java
mandates fairly precisely when a class must be initialized.
Effectively, a class must be initialized immediately before its first
use. Therefore, we could modify our implementation of RMJ to
perform each class’s “load-time” checks at initialization time rather
than at load time. Instead of using a custom class loader, the RMJ
compiler would add appropriate calls from each class’s static
initializer to the routines for performing RMJ’s completeness and
ambiguity checks.

The RMJ class loader trusts the method annotations inserted into
class files by the RMJ compiler. If the annotations are inaccurate,
the loader may miss real message dispatch errors or signal spurious
ones. However, only dispatch errors as defined by RMJ are
potentially compromised by this trust relationship. Importantly, the
regular Java bytecode verification process is unaffected: the Java
verifier can independently check Java’s well-formedness conditions
on each class file, without requiring any trust in the RMJ compiler.
Therefore, a running RMJ program is guaranteed not to violate the
integrity of the underlying Java virtual machine.

It is possible that the loader could be augmented to independently
verify that a class adheres to its associated method annotations,
because of the stylized way in which external methods and
multimethods are compiled. For example, a method containing a
sequence of instanceof tests could be checked to correspond to
a given set of annotations for multimethods. However, it would be
very difficult to detect missing method annotations, because RMJ
code compiles to regular Java bytecode. For example, it would be

impossible to know whether the instanceof tests in some
bytecode method were produced via translation from RMJ’s
multimethods or were instead written directly by the original Java
programmer.

4. STATUS AND EXPERIENCE
We have developed an implementation of RMJ. We extended the
MultiJava compiler to handle the additional RMJ language features
and code generation strategy, and we implemented
RMJClassLoader, RMJPreloader, and associated helper
classes. Our implementation is freely available for download as a
part of the regular MultiJava system [Mul]. The implementation
includes all of the features and algorithms described in this paper,
with one exception. Due to complications in the design of the Java
compiler underlying MultiJava’s compiler, it is challenging to allow
concrete classes lacking appropriate singly dispatched default
methods (e.g., the example in Figure 10), so we do not currently
support this idiom.

The next subsection describes a larger example using RMJ than the
ones presented so far, and the second subsection reports on some
performance experiments using this example.

4.1 A Case Study

We have experimented with rewriting in RMJ parts of Barat
[Bokowski & Spiegel 98], a Java front-end written by others. Barat
builds an abstract syntax tree (AST) from a set of Java source files,
which can then be used to perform various static analyses over the
given code. Barat is itself written in Java, and the AST nodes are
represented by a class hierarchy, with root interface Node. Barat
uses the visitor design pattern in order for clients to perform their
desired analyses without modifying the node classes directly. To
write an analysis, clients create a new class implementing the
Visitor interface. To invoke the analysis, clients invoke an AST
node’s accept method, passing an instance of the new visitor.

Barat comes with several predefined visitors. One of them, the
OutputVisitor, outputs a source code representation of the
given AST nodes. We re-implemented this functionality using
RMJ, by writing an external operation, output, on the AST node
classes. As opposed to the visitor pattern, which requires “hooks”
(the accept method) inside the node classes, the implementer of
Barat did not need to plan ahead to allow us to implement our
revised output operation. Further, it was natural to define the
output operation to take parameters, for example the current
indentation and the stream to which the output should be directed.
Because the OutputVisitor has to conform to the Visitor
interface, these parameters must instead be simulated via fields in
the OutputVisitor class. Finally, clients can invoke the
output operation via ordinary message sending syntax, as if it
were defined in the original node classes.

Those benefits would be obtained via an output external
operation in regular MultiJava, but the output operation also
benefits from the new features of RMJ. In MultiJava, the output
operation would be forced to contain a default implementation for
the root interface Node, to handle any unseen concrete subclasses.
However, there is no reasonable default behavior in this case, so the
default method would be forced to simply throw a run-time
exception. The presence of the default implementation also means
that static exhaustiveness checking succeeds trivially, even though
the intent is that the default method should never be invoked. In
RMJ, output contains an abstract method for Node. During
modular static typechecking, a warning is signaled, and any visible
subclasses are checked for exhaustiveness. Our custom class loader
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then checks at load time to ensure that all subclasses of Node do
indeed have an appropriate implementation of output.

The output operation also naturally employs RMJ’s glue
methods. One way Barat has been used is to experiment with
extensions to Java (e.g. [Aldrich et al. 02]). Clients add their own
subclasses of Node to represent the new syntax and update the
Barat parser appropriately. Unfortunately, the client extensions
break all existing visitors, which do not know how to visit the new
nodes. If clients wish to use the OutputVisitor, it must first be
modified in place to contain methods for visiting the new nodes,
and then retypechecked and recompiled. Using MultiJava’s external
methods instead of visitors would suffer from a similar problem:
because all external methods of an operation must be in the same
file, source access to the output operation would be required in
order to add output external methods for the new nodes.

In RMJ, the output operation can be updated to handle the new
nodes, without requiring source access to the original output
external methods, or even recompiling them. We simply create a
new file containing glue methods that provide output
functionality for the new nodes. As an example, we created a
version of the output operation that does not support Barat’s
Cast and Instanceof nodes, representing Java’s run-time cast
and instanceof test, respectively. Therefore, the output
operation is only well-defined on the subset of Java programs that
do not perform explicit run-time type manipulation. To handle the
“extension” allowing casts and instanceof tests, we then created two
output glue methods handling the new nodes, without modifying
the original output code or the new nodes. Clients of output
whose Java programs employ run-time type manipulation add the
glue files to their rmj.glue property to make the two independent
extensions to the Node hierarchy (the output operation and the
new node subclasses) work together.

A final use of RMJ’s expressiveness is required by Barat’s use of
interfaces as the sole external view of its functionality. Barat
provides its AST nodes in two parallel hierarchies: as a set of
interfaces, and as an associated set of classes implementing those
interfaces. The intent is that clients never interact directly with the
implementation classes, but only with the interfaces. Node, Cast,
Instanceof, and all other Node kinds are public Java interfaces;
internal concrete classes like CastImpl and InstanceofImpl
implement these public interfaces. RMJ allows the various
output methods to be defined directly on the public interfaces
and ensures that there are no multiple-inheritance ambiguities at
load time.

One benefit of the original visitor implementation is that it can be
inherited for use by other visitors. For example, a
LoggingVisitor could subclass from OutputVisitor and
override a few of the visit methods to print some extra logging
information, while inheriting the rest of the visit methods.
Writing a logging external operation that forwards to our output
operation would not work, since recursive calls would all go to
output instead of back to the logging operation.

If inheritance of visitors is desired, an alternative strategy in RMJ is
to implement the OutputVisitor as an Output class that
contains an operation accepting the node being visited as an
argument, as shown in the top of Figure 13. When the apply
operation is invoked, multimethod dispatch is used to provide the
appropriate implementation for each node. The Output class can
then be extended by a Logging class, analogous to the
LoggingVisitor. But unlike the visitor-based approach, the
Output class using multimethods requires no advance planning
from the implementer of the node hierarchy. Additionally, apply

multimethods within the Output class can inherit from one
another, unlike the various visitX methods of the
OutputVisitor class. Finally, an external operation named
output can be written as a wrapper around a call to Output’s
apply method, as shown in the bottom of Figure 13, so that clients
can use their normal calling sequence to invoke the operation.

4.2 Performance Experiments

RMJ adds run-time overhead to perform its load-time checking. To
gauge the performance cost of RMJ’s specialized class loader, we
ran four different versions of the output functionality described
above. The first version is the original OutputVisitor class
provided with Barat. The second is an external output operation
using regular MultiJava. Because of MultiJava’s restrictions for
modular safety, this version includes a concrete default
implementation for Node. In addition, all of the output methods
are declared in a single file, and they are defined directly on the
internal classes (e.g., CastImpl and InstanceofImpl) rather
than the external interfaces (e.g., Cast and Instanceof). The
third version is an RMJ version of the external output operation,
which uses an abstract method for Node and uses glue methods for
the output methods for casts and instanceof tests, but it
leaves the output methods defined on the internal classes. The
fourth version is the “ideal” RMJ version, which is like the third
version except that the output methods are defined on the
external interfaces. The first two versions can be run with either
Java’s regular class loader or with the RMJ class loader, but the
third and fourth versions can only be run using RMJ’s custom
loader.

We invoked each version of the output functionality on two inputs:
a small input that’s a single Java source file 662 lines in length, and
a large input that’s 20 Java source files 7476 total lines in length.
Barat parses the file(s), creates the associated AST nodes, and then
invokes the output functionality (either the OutputVisitor or
the output operation) to print out the source-code representation
of the nodes. All reported times are the median value of the user
time of five runs, measured on a SunBlade 1000 Model 2900 with
5GB RAM running SunOS 5.8 and Sun Java SDK1.4.1. Table 1
presents the results of these experiments.

The “passive” overhead for using the RMJ class loader instead of
the regular Java class loader, when the RMJ class loader has no
load-time checks to perform (the difference between the two
loaders for each of the first two versions), is 8-9% for the small
input and to 3-8% for the larger input. When the RMJ class loader
has to do work to load external methods (including glue methods)
and to check for load-time incompleteness and ambiguities (the
difference between the MultiJava version using the Java loader and

public class Output {

public void apply(Node@IfNode n) {
... code for outputing an if statement ... }

public void apply(Node@WhileNode n) {
... code for outputing a while statement ... }

...

}

-----------------------------------------

public void Node.output() {

new Output().apply(this);

}

Figure 13: An alternative to visitors in RMJ
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each of the two RMJ versions), the overhead becomes 5-14% for
the small input and 6-8% for the larger input. Because the overhead
of RMJ’s class loader is incurred only when a class is loaded, we
would expect that as programs run longer, the impact of the load-
time checks on performance becomes less important. This
expectation is borne out by these results, although the differences in
times are so small that the run-to-run variations in times generally
are greater than the measured overhead for RMJ.

The overhead for using external methods instead of visitors (the
difference between the Java version and the MultiJava version) is 1-
7%. This cost is incurred throughout execution, not at load time,
and is due to the inefficient implementation of external operations
as compared with the implementation of ordinary Java methods.
This cost is largely independent of whether MultiJava or RMJ is
used.

5. PREVIOUS WORK
The inspiration for the features in MultiJava and RMJ comes from
previous languages based on multimethods, including CLOS
[Steele Jr. 90, Paepcke 93], Dylan [Shalit 96], and Cecil [Chambers
92, Chambers 93]. These languages support arbitrary multimethods
and external methods (indeed, all methods are written external to
their classes). However, CLOS and Dylan are dynamically typed,
and Cecil requires global typechecking to ensure type safety of
message sends [Litvinov 98]. Vortex [Dean et al. 96], the compiler
for Cecil (and other languages), employs a global compilation
strategy that makes heavy use of whole-program optimization.

Parasitic methods [Boyland & Castagna 97] and Half & Half
[Baumgartner et al. 02] are both extensions to Java that support
encapsulated multimethods [Castagna 95], which are akin to
internal multimethods in RMJ; neither language supports external
(multi)methods. Like RMJ, both languages support the use of

interfaces as specializers in multimethods. Because it is difficult to
modularly check multimethod ambiguity in the presence of
interface specializers, parasitic methods modify the multimethod
dispatch semantics so that ambiguities cannot exist, employing the
textual order of methods to break ties. Half & Half resolves the
problem by performing ambiguity checking on entire packages at a
time, rather than on individual classes. For such package-level
checking to be safe, Half & Half must also limit the visibility of
some interfaces to their associated packages, thereby disallowing
outside clients from employing them as specializers. In contrast,
RMJ ensures that operations are unambiguous without either
modifying the multimethod dispatching semantics or imposing
restrictions on the usage of interface specializers. Instead, RMJ
requires incremental ambiguity checking at class load time.

Recently several languages have emerged that provide direct
support for separation of concerns. For example, AspectJ [Kiczales
et al. 01] is an aspect-oriented extension to Java, whose aspects can
extend existing classes in powerful ways. Hyper/J [Ossher & Tarr
00] is a subject-oriented extension to Java that provides hyperslices,
which are fine-grained modular units that are composed to form
classes. Both languages support open classes; for example, this
ability corresponds to AspectJ’s introduction methods. The
languages additionally support many more flexible extensibility
mechanisms than RMJ. For example, AspectJ’s before and after
methods provide ways of modifying existing methods externally.
To cope with this level of expressiveness, these languages employ
non-modular typechecking and compilation strategies. For
example, AspectJ’s compiler weaves the aspects into their
associated classes; only when all aspects that can possibly affect the
class are available for weaving can typechecking and compilation
be completed.

Binary Component Adaptation (BCA) [Keller & Hölzle 98] allows
programmers to define adaptation specifications for their classes,
which can include the addition of new methods, thereby supporting
open classes. Adaptation specifications can also include
modifications not supported by RMJ, like the declaration that an
existing class implements some particular interface. The
typechecking and compilation strategy is similar to the aspect
weaving approach described above, requiring access to all
adaptation specifications that can affect a given class in order to
typecheck and compile the class. The authors describe an on-line
implementation of BCA, whereby the weaving is performed
dynamically using a specialized class loader. Our strategy is
superficially similar, with glue methods playing the role of
adaptation specifications. However, RMJ’s class loader simply
verifies that loaded classes are type-safe when this cannot be fully
determined modularly. No modification to the class files is
necessary, and a class can be safely verified and loaded before its
augmentations are available.

Jiazzi [McDirmid et al. 01] is an extension to Java that provides
components with a powerful external linking semantics, including
recursive linking. The authors show how to use these features to
encode an open class pattern, whereby a component imports a class
and exports a version of that class modified to contain a new
method or field. Open classes in RMJ (and MultiJava) allow two
clients of a class to augment the class in independent ways, without
having to be aware of one another. In contrast, in Jiazzi there must
be a single component that integrates all augmentations, thereby
creating the final version of the class. Component linking in Jiazzi
is performed statically, so it is not possible to dynamically add new
methods to existing classes. Dynamic augmentation is possible in
RMJ, since it is integrated with Java’s regular dynamic loading
process.

Table 1: Performance

input
size

version loader
time
(secs)

over-
head

small

Java
OutputVisitor

Java 3.9 0%

RMJ 4.2 8%

MultiJavaoutput
on classes

Java 4.1 6%

RMJ 4.4 15%

RMJ output on
classes RMJ 4.3 11%

RMJ output on
interfaces RMJ 4.6 20%

large

Java
OutputVisitor

Java 9.8 0%

RMJ 10.5 8%

MultiJavaoutput
on classes

Java 10.3 6%

RMJ 10.6 9%

RMJ output on
classes RMJ 11.2 14%

RMJ output on
interfaces RMJ 10.9 12%
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The visitor design pattern [Gamma et al. 95] is a programming
idiom that allows new operations to be added to existing classes
without modifying existing code. However, the visitor pattern has
several drawbacks that are not shared by open classes in RMJ, as
discussed in Section 4.1. Most importantly, the ability to add new
operations to an existing class comes at the cost of losing the
ordinary object-oriented ability to add new subclasses, since each
visitor must be modified to handle the new subclass. Several
researchers have designed extended versions of the visitor pattern
that resolve this issue [Krishnamurthi et al. 98, Palsberg & Jay 98,
Martin 98, Nordberg 98, Vlissides 99, Zenger & Odersky 01].
However, these extensions require dynamic type casts or run-time
reflection, and they often complicate the already-complex visitor
pattern.

6. CONCLUSIONS AND FUTURE WORK
RMJ represents a new point in the design space balancing
extensibility against modular reasoning. It offers almost the full
power of external methods and multimethods while retaining all of
MultiJava’s modular typechecking guarantees. Many of the
supported idioms can be proved safe purely modularly, independent
of how the module is used in enclosing programs, and the
remainder are proved safe incrementally as each module is loaded.
A preloader tool assists in discovering load-time errors before run
time. Programmers can explicitly choose between expressiveness
and early checking, based on their software development needs and
goals.

Unlike some related systems that also offer greater extensibility,
RMJ retains a modular approach to typechecking and compilation.
RMJ can check modules separately, and either guarantee them safe
or point out exactly those situations that programmers must be
concerned about to avoid load-time errors. Current systems based
on global or large-scale translation or weaving to combine separate
concerns do not provide these kinds of early checking.

Much of the challenge in developing RMJ was in designing the
interplay between compile-time and load-time checking and code
generation, to keep load-time overhead small. RMJ’s
implementation strategy performs all code generation at compile
time in a modular, per-file fashion. It also attempts to perform as
much checking modularly as it can. For those checks that lead to
warning messages to programmers, additional annotations are
generated, directing the load-time checker’s efforts to those parts of
the program that need load-time checking. The loader maintains
several data structures that help it to perform the needed checks
efficiently.

In future work, we plan to pursue several directions:

• To gain experience with the strengths and limitations of RMJ,
we will be using RMJ in the implementation of several large
systems. We have already been using MultiJava in several case
studies, and this experience was one motivation for designing
RMJ.

• We wish to explore supporting additional extensibility while
retaining modular or load-time checking. It would be useful to
declare that a class implements an interface outside of the class
(for example, along with adding external operations to the
class). Adding static methods and static fields to a class from
the outside would be simple but useful extensions. Adding
instance fields and constructors to a class from the outside
would also be useful but is more challenging to implement
efficiently. We also wish to investigate how we might
incorporate some of the additional extensibility of systems like
AspectJ and Hyper/J, particularly the ability to extend

individual methods with additional “before” and “after”
behavior from the outside, while retaining modular checking.

• We wish to investigate including binary code generation or
rewriting as part of custom class loading. As mentioned in
Section 3.1, we could dynamically generate more efficient
dispatching methods for external operations. When a new
dispatcher class is loaded, any previous dispatcher method
would be invalidated and dropped. The next time the external
operation is invoked, a customized dispatcher method based on
the list of currently loaded dispatchers would be dynamically
generated, loaded, and invoked. Previous efficient multimethod
dispatching algorithms can be used when generating the
dispatcher based on the current snapshot of loaded methods
[Chambers & Chen 99]. Binary code generation could also be
used to allow additional kinds of extensibility that are
challenging to implement modularly, including the ability to
write glue methods belonging to regular internal operations.
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